1. Electric Charges and Fields
hard

त्रिज्या $r$ की एक पतले अर्द्ध-वृत्तीय वलय पर धनात्मक आवेश $q$ एकसमान रूप से वितरित है। केन्द्र $O$ पर परिणामी क्षेत्र $\overrightarrow{ E }$ है।

A

$\frac{q}{{2{\pi ^2}{\varepsilon _0}{r^2}}}\hat j\;\;\;\;\;\;\;\;$

B

$\;\frac{q}{{4{\pi ^2}{\varepsilon _0}{r^2}}}\hat j$

C

$-$$\;\frac{q}{{4{\pi ^2}{\varepsilon _0}{r^2}}}\hat j$

D

$-$$\;\frac{q}{{2{\pi ^2}{\varepsilon _0}{r^2}}}\hat j$

(AIEEE-2010)

Solution

Let us consider a differential element $d l .$ charge on this element.

$d q=\left(\frac{q}{\pi r}\right) d l$

$=\frac{q}{\pi r}(r d \theta)(\because d l=r d \theta)$

$=\left(\frac{q}{\pi}\right) d \theta$

Electric field at $O$ due to $d q$ is

$d E=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{d q}{r^{2}}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q}{\pi r^{2}} d \theta$

The component $d E \cos \theta$ will be counter balanced by another element on left portion. Hence resultant field at $\mathrm{O}$ is the resultant of the component $d E \sin \theta$ only.

$\therefore E=\int d E \sin \theta=\int_{0}^{\pi} \frac{q}{4 \pi^{2} r^{2} \epsilon_{0}} \sin \theta d \theta$

$=\frac{q}{4 \pi^{2} r^{2} \epsilon_{0}}[-\cos \theta]_{0}^{\pi}=\frac{q}{4 \pi^{2} r^{2} \epsilon_{0}}(+1+1)$

$=\frac{q}{2 \pi^{2} r^{2} \epsilon_{0}}$

The direction of $E$ is towards negative $y-$ axis.

$\therefore \vec{E}=-\frac{q}{2 \pi^{2} r^{2} \epsilon_{0}} \hat{j}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.