Gujarati
2. Electric Potential and Capacitance
normal

$R$ त्रिज्या के एक पतले गोलीय अचालक कोश (spherical insulating shell) पर आवेश एकसमान रूप से इस तरह से वितरित है कि इसकी सतह पर विभव $V _0$ है। इसमें एक छोटे क्षेत्रफल $\alpha 4 \pi R ^2(\alpha<<1)$ वाला एक छिद्र बकी कोश को प्रभावित किए क्ति काया जाता है। निम्नलिखित कथनों में से कौनसा सही है?

A

The ratio of the potential at the center of the shell to that of the point at $\frac{1}{2} R$ from center towards the hole will be $\frac{1-\alpha}{1-2 \alpha}$

B

The magnitude of electric field at the center of the shell is reduced by $\frac{\alpha V_0}{2 R}$

C

The magnitude of electric field at a point, located on a line passing through the hole and shell's center on a distance $2 R$ from the center of the spherical shell will be reduced by $\frac{\alpha V_0}{2 R}$

D

The potential at the center of the shell is reduced by $2 \alpha V _0$

(IIT-2019)

Solution

Let charge on the sphere initially be $Q$.

$\therefore \frac{ kQ }{ R }= V _0$

and charge removed $=\alpha Q$

(image)

and $V _{ p }=\frac{ kQ }{ R }-\frac{2 K \alpha Q }{ R }=\frac{ kQ }{ R }(1-2 \alpha)$

$V _{ c }  =\frac{ kQ (1-\alpha)}{ R }$

$\therefore \frac{ V _{ c }}{ V _{ p }}  =\frac{1-\alpha}{1-2 \alpha}$

$(2)$ $\left( E _{ C }\right)_{\text {inritial }}=$ zero

$\left(E_c\right)_{\text {fimal }}=\frac{k \alpha Q}{R^2}$

$\Rightarrow$ Electric field increases

(image)

$(3)$ $\left( E _{ p }\right)_{\text {iritizl }}=\frac{ kQ }{4 R ^2}$

$\left( E _{ P }\right)_{\text {fimel }}=\frac{ kQ }{4 R ^2}-\frac{ k \alpha Q }{ R ^2}$

$\Delta E _{ p }=\frac{ kQ }{4 R ^2}-\frac{ kQ }{4 R ^2}+\frac{ k \alpha Q }{ R ^2}=\frac{ k \alpha Q }{ R ^2}=\frac{ V _0 \alpha}{ R }$

(image)

(4) $\left(V_c\right)_{\text {minitil }}=\frac{k Q}{R}$

$\left(V_c\right)_{\text {finel }}=\frac{k Q(1-\alpha)}{R}$

$\Delta V_C=\frac{k Q}{R}(\alpha)=\alpha V_0$  (image)

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.