A train moves from one station to another in $2$ hours time. Its speed-time graph during this motion is shown in the figure. The maximum acceleration during the journey is.............$km\, h^{-2}$
$140$
$160$
$100$
$120$
A body $A$ starts from rest with an acceleration $a_1$ . After $2\ seconds$ , another body $B$ starts from rest with an acceleration $a_2$ . If they travel equal distance in the $5th\ second$ , after the start of $A$ , then the ratio $a_1$ : $a_2$ is equal to
Velocity of a particle is in negative direction with constant acceleration in positive direction. Then, match the following columns.
Colum $I$ | Colum $II$ |
$(A)$ Velocity-time graph | $(p)$ Slope $\rightarrow$ negative |
$(B)$ Acceleration-time graph | $(q)$ Slope $\rightarrow$ positive |
$(C)$ Displacement-time graph | $(r)$ Slope $\rightarrow$ zero |
$(s)$ $\mid$ Slope $\mid \rightarrow$ increasing | |
$(t)$ $\mid$ Slope $\mid$ $\rightarrow$ decreasing | |
$(u)$ |Slope| $\rightarrow$ constant |
A particle of mass $m$ moves on the x-axis as follows : it starts from rest at $t = 0$ from the point $x = 0$ and comes to rest at $ t= 1$ at the point $x = 1$. No other information is available about its motion at intermediate time $(0 < t < 1)$. If $\alpha $ denotes the instantaneous acceleration of the particle, then
Acceleration-time graph of a body is shown. The corresponding velocity-time graph of the same body is
A bullet moving with a velocity of $100\, m/s$ can just penetrate two planks of equal thickness. The number of such planks penetrated by the same bullet, when the velocity is doubled, will be