$2.06 \times 10^{4} \;\mathrm{N} $ તણાવવાળા સ્ટીલના તારમાં એક લંબગત તરંગ $v$ વેગથી ગતિ કરે છે. જ્યારે તણાવ $T$ થાય ત્યારે વેગ $\frac v2$ થાય તો ${T}$ નું મૂલ્ય કેટલું હશે?
$10.2 \times 10^{2} \;\mathrm{N}$
$5.15 \times 10^{3}\; \mathrm{N}$
$2.50 \times 10^{4}\; \mathrm{N}$
$30.5 \times 10^{4}\; \mathrm{N}$
$12\, m$ લંબાઈ અને $6\, kg$ દળ ધરાવતા દોરડાને એક દઢ આધાર સાથે બાંધીને શિરોલંબ લટકાવે છે, અને $2\, kg$ દળના એક પદાર્થને તેના મુક્ત છેડા સાથે જોડેલ છે. દોરડાના નીચેના છેડેથી $6\, cm$ તરંગલંબાઈ ધરાવતા એક નાના લંબગત તરંગ ઉત્પન્ન કરવામાં આવે છે. જ્યારે આ તરંગ ઉપરના છેડે પહોચે ત્યારે તેની તરંગલંબાઈ ($cm$ માં) કેટલી હશે?
સુરેખ તાર (દળ$=6.0\; \mathrm{g}$, લંબાઈ$=60\; \mathrm{cm}$ અને આડછેડનું ક્ષેત્રફળ$=1.0\; \mathrm{mm}^{2}$) તાર માટે લંબગત તરંગની ઝડપ $90\; \mathrm{ms}^{-1}$ છે જો તારનો યંગ મોડ્યુલસ $16 \times 10^{11}\; \mathrm{Nm}^{-2}$ હોય તો તારની લંબાઈમાં કેટલો વધારો થયો હશે?
$L$ લંબાઈ અને $M$ દળનું એક દોરડું છત પરથી મુકત પાણે લટેકે છે. એક લંબગત તરંગને દોરડાના નિચેના છેડેથી ઉપર પહોંચતા લાગતો સમય $T$ છે, તો મધ્યબિંદુ સુધી તરંગને પહોંચતા લાગતો સમય કેટલો હોય.
રેખીય દળ ઘનતા $8.0 \times 10^{-3}\, kg\, m^{-1}$ હોય તેવી એક લાંબી દોરીનો એક છેડો $256\, Hz$ ની આવૃત્તિના એ વિદ્યુત-ચાલિત સ્વરકાંટા સાથે જોડેલ છે. બીજો છેડો એક ગરગડી પરથી પસાર થઈ $90\, kg$ દળ ધરાવતા એક પલ્લા સાથે બાંધેલ છે. ગરગડી આગળનું દોરીનું બિંદુ ત્યાં આવતી બધી ઊર્જાને શોષી લે છે તેથી ત્યાં પરાવર્તિત તરંગનો કંપવિસ્તાર અવગણ્ય છે. $t = 0$ સમયે દોરીના ડાબા છેડા (સ્વરકાંટા બાજુનો છેડો) $x = 0$ નું લંબગત સ્થાનાંતર $(y = 0)$ શૂન્ય છે અને તે ધન -દિશામાં ગતિ કરે છે. તરંગનો કંપવિસ્તાર $5.0 \,cm $ છે. દોરીમાં તરંગને રજૂ કરતા લંબગત સ્થાનાંતર $y$ ને $x$ અને $t$ ના વિધેય તરીકે લખો.
$2.5\, kg$ દળની એક દોરી $200\, N$ ના તણાવ હેઠળ છે. તણાવવાળી દોરીની લંબાઈ $20.0\, m$ છે. જો દોરીના એક છેડે એક લંબગત આંચકો (Jerk) આપવામાં આવે, તો તે વિક્ષોભને બીજા છેડે પહોંચતાં કેટલો સમય લાગે ?