- Home
- Standard 11
- Physics
A uniform rod of length $L$ and mass $M$ is pivoted at the centre. Its two ends are attached to two springs of equal spring constants $k$. The springs are fixed to rigid supports as shown in the figure, and the rod is free to oscillate in the horizontal plane. The rod is gently pushed through a small angle $\theta$ in one direction and released. The frequency of oscillation is

$\frac{1}{2 \pi} \sqrt{\frac{2 k}{M}}$
$\frac{1}{2 \pi} \sqrt{\frac{k}{M}}$
$\frac{1}{2 \pi} \sqrt{\frac{6 k}{M}}$
$\frac{1}{2 \pi} \sqrt{\frac{24 k}{M}}$
Solution
The correct option is $C \frac{1}{2 \pi}, \frac{\overline{6 k}}{ M }$
ANSWER:
Spring force acting at the end gives restoring torque
$\tau=r F \sin \theta$
$\Rightarrow \tau_0=-\left(k x \frac{L}{2} \cos \theta\right) \times 2$
Value of displacement of spring,
$x=\frac{L}{2} \sin \theta$
For the value of angular displacement tends to zero,
$\theta \rightarrow 0$
$\Rightarrow \cos \theta \cong 1, \sin \theta \cong \theta$
Then torque,
$\Rightarrow \tau=-k \frac{L}{2} \times \frac{L}{2} \theta=-\frac{k L^2}{2} \theta \ldots$
From equation $(i)$,
$\Rightarrow \tau=1 a=\frac{k L^2}{2} \theta$
$\Rightarrow \frac{M L^2}{12} a=-\frac{k L^2}{2} \theta$
$\Rightarrow a=-\frac{6 k}{M} \theta=-\omega^2 \theta$
$\Rightarrow \omega=\sqrt{\frac{6 k}{M}}$
Time period,
$T =\frac{2 \pi}{\omega}$
$\Rightarrow T=2 \pi \sqrt{\frac{M}{6 k}}$
Frequency,
$f=\frac{1}{T}=\frac{1}{2 \pi} \sqrt{\frac{\overline{M k}}{M}}$
Final answer: $(c)$