$2.4 \,m$ व्यास के किसी एकसमान आवेशित चालक गोले का पृष्ठीय आवेश छनत्व $80.0 \mu C / m ^{2}$ है।
$(a)$ गोले पर आवेश ज्ञात कीजिए।
$(b)$ गोले के पृष्ठ से निर्गत कुल वैद्युत फ्लक्स क्या है?
$(a)$ Diameter of the sphere, $d =2.4\, m$
Radius of the sphere, $r=1.2\, m$
Surface charge density, $\sigma=80.0\, \mu\, C / m ^{2}=80 \times 10^{-6} \,C / m ^{2}$
Total charge on the surface of the sphere, $Q=$ Charge density $\times$ Surface area $=\sigma \times 4 \pi r^{2}=80 \times 10^{-6} \times 4 \times 3.14 \times(1.2)^{2}$$=1.447 \times 10^{-3} \,C$
Therefore, the charge on the sphere is $1.447 \times 10^{-3} \,C$
$(b)$ Total electric flux ($\phi_{ total }$) leaving out the surface of a sphere containing net charge $Q$ is given by the relation,
$\phi_{\text {Total }}=\frac{Q}{\varepsilon_{0}}$
Where, $\varepsilon_{0}=$ Permittivity of free space $=8.854 \times 10^{-12} \,N ^{-1} \,C ^{2} \,m ^{-2}$
$Q=1.447 \times 10^{-3} \,C$
$\therefore \phi_{\text {Total }}=\frac{1.447 \times 10^{-3}}{8.854 \times 10^{-12}}$
$=1.63 \times 10^{8} \,N\, C ^{-1} \,m ^{2}$
Therefore, the total electric flux leaving the surface of the sphere is $1.63 \times 10^{8} \;N \,C ^{-1} \,m ^{2} .$
एक आवेश $Q$ को एक घन के किनारे पर रखा जाता है। इसकी प्रत्येक फलक से निकलने वाला वैधुत फ्लक्स होगा :
किसी बिन्दु आवेश ‘$q$’ को एक धात्विक गोलीय कोश के अन्दर रखा गया है। निम्न में से कौनसा चित्र विद्युत बल रेखाओं की सही स्थिति प्रदर्शित करता है
एक घन के अन्दर $e$ परिमाण के आवेश वाले $8$ द्विध्रुव रखे हैं। घन से निर्गत कुल विद्युत फ्लक्स का मान होगा
एक खोखले बेलन के भीतर $q$ कूलॉम का आवेश स्थित है। यदि चित्रानुसार वक्र तल $B$ से सम्बद्ध वैधुत अभिवाह वोल्ट-मी मात्रकों में $\phi$ हो तो समतल तल $A$ से सम्बद्ध वोल्ट-मी मात्रकों में अभिवाह होगा-
एक आवेश $q$ को घन के केन्द्र पर रखा गया है किसी भी फलक से गुजरने वाला फ्लक्स होगा: