$\sigma$ सतह आवेश घनत्व से $R$ त्रिज्या की समानरूप से आवेशित एक चकती $x-y$ तल में रखी है, जिसका केन्द्र मूलबिन्दु पर है। $z$-अक्ष के अनुदिश मूल बिन्दु से $Z$ दूरी पर विधुत क्षेत्र की तीव्रता ज्ञात कीजिए।
${E}=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{{Z}}{\left({Z}^{2}+{R}^{2}\right)^{1 / 2}}\right)$
${E}=\frac{\sigma}{2 \varepsilon_{0}}\left(1+\frac{{Z}}{\left({Z}^{2}+{R}^{2}\right)^{1 / 2}}\right)$
${E}=\frac{2 \varepsilon_{0}}{\sigma}\left(\frac{1}{\left({Z}^{2}+{R}^{2}\right)^{1 / 2}}+{Z}\right)$
${E}=\frac{\sigma}{2 \varepsilon_{0}}\left(\frac{1}{\left({Z}^{2}+{R}^{2}\right)}+\frac{1}{{Z}^{2}}\right)$
दो आवेश $ + 5\,\mu C$ तथा $ + 10\,\mu C$ एक दूसरे से $20\, cm$ दूर रखे हैं। इन आवेशों को जोड़ने वाली रेखा के मध्य बिन्दु पर कुल विद्युत क्षेत्र है
मूल बिन्दु पर $10 \mu \mathrm{C}$ का एक बिन्दु आवेश रखा है। $\mathrm{x}$ अक्ष के कौनसे स्थान पर $40 \mu \mathrm{C}$ का बिन्दु आवेश रखने पर $\mathrm{x}=2 \mathrm{~cm}$ पर कुल वैद्युत क्षेत्र शून्य होगा-
$0.003\, gm$ द्रव्यमान का आवेशित कण नीचे की ओर कार्यरत विद्युत क्षेत्र $6 \times {10^4}\,N/C$ में विरामावस्था में है। आवेश का परिमाण होगा
किसी विद्युत क्षेत्र में संतुलन की अवस्था में इलेक्ट्रॉन के द्वारा अनुभव किया गया विद्युतीय बल उसके भार के तुल्य है, विद्युत क्षेत्र की तीव्रता होगी
एक आवेश $q$ को $q_1$ और $q_2$ आवेशों में विभाजित करके एक $a$ भुजा वाले समबाहु त्रिभुज के दो शीर्षों पर रखा जाता है। त्रिभुज के तीसरे शीर्ष पर लगने वाले विद्युत क्षेत्र $E$ के मान को $x =q_1 / q$ के फलन के रूप में फलें निम्नाकित व्यवस्था चित्रों में दर्शाया गया है। सही चित्र का चयन करें|