A variable straight line passes through a fixed point $(a, b)$ intersecting the co-ordinates axes at $A\,\, \&\,\, B$. If $'O'$ is the origin then the locus of the centroid of the triangle $OAB$ is :
$bx + ay - 3xy = 0$
$bx + ay - 2xy = 0$
$ax + by - 3xy = 0$
none
The sides of a rhombus $ABCD$ are parallel to the lines, $x - y + 2\, = 0$ and $7x - y + 3\, = 0$. If the diagonals of the rhombus intersect at $P( 1, 2)$ and the vertex $A$ ( different from the origin) is on the $y$ axis, then the ordinate of $A$ is
If the vertices $P$ and $Q$ of a triangle $PQR$ are given by $(2, 5)$ and $(4, -11)$ respectively, and the point $R$ moves along the line $N: 9x + 7y + 4 = 0$, then the locus of the centroid of the triangle $PQR$ is a straight line parallel to
The sides $AB,BC,CD$ and $DA$ of a quadrilateral are $x + 2y = 3,\,x = 1,$ $x - 3y = 4,\,$ $\,5x + y + 12 = 0$ respectively. The angle between diagonals $AC$ and $BD$ is ......$^o$
A straight line cuts off the intercepts $OA = a$ and $OB = b$ on the positive directions of $x$-axis and $y -$ axis respectively. If the perpendicular from origin $O$ to this line makes an angle of $\frac{\pi}{6}$ with positive direction of $y$-axis and the area of $\triangle OAB$ is $\frac{98}{3} \sqrt{3}$, then $a ^2- b ^2$ is equal to:
Locus of the image of point $ (2,3)$ in the line $\left( {2x - 3y + 4} \right) + k\left( {x - 2y + 3} \right) = 0,k \in R$ is a: