- Home
- Standard 11
- Mathematics
9.Straight Line
normal
Let $O=(0,0)$ : let $A$ and $B$ be points respectively on $X$-axis and $Y$-axis such that $\angle O B A=60^{\circ}$. Let $D$ be a point in the first quadrant such that $A D$ is an equilateral triangle. Then, the slope of $D B$ is
A
$\sqrt{3}$
B
$\sqrt{2}$
C
$\frac{1}{\sqrt{2}}$
D
$\frac{1}{\sqrt{3}}$
(KVPY-2016)
Solution

(d)
$\angle O B A=60^{\circ}$
$\angle O A B=30^{\circ}$
$O A D$ is an equilateral triangle.
$\therefore \quad \angle A O D=\angle O D A=\angle O A D=60^{\circ}$
$O A=A D=O D$
Let $B(0, e )$
$\therefore \quad A(\sqrt{3} a, 0)$
D $\left(\frac{\sqrt{3}}{2} a, \frac{3}{2} a\right)$
Slope of $B D=\frac{\frac{3}{2}-a}{\frac{\sqrt{3}}{2} a}=\frac{1}{\sqrt{3}}$
Standard 11
Mathematics