A vector $\overrightarrow A $ points vertically upward and $\overrightarrow B $points towards north. The vector product $\overrightarrow A \times \overrightarrow B $ is

  • A

    Zero

  • B

    Along west

  • C

    Along east

  • D

    Vertically downward

Similar Questions

Projection of vector $\vec A$ on $\vec B$ is

Find unit vector perpendicular to $\vec A$ and $\vec B$ where $\vec A = \hat i - 2\hat j + \hat k$ and $\vec B = \hat i + 2\hat j$

Consider three vectors $A =\hat{ i }+\hat{ j }-2 \hat{ k }, B =\hat{ i }-\hat{ j }+\hat{ k }$ and $C =2 \hat{ i }-3 \hat{ j }+4 \hat{ k }$. A vector $X$ of the form $\alpha A +\beta B$ ( $\alpha$ and $\beta$ are numbers) is perpendicular to $C$.The ratio of $\alpha$ and $\beta$ is

If $\overrightarrow A  \times \overrightarrow B = \overrightarrow C + \overrightarrow D,$ then select the correct alternative-

Show that the area of the triangle contained between the vectors $a$ and $b$ is one half of the magnitude of $a \times b .$