- Home
- Standard 11
- Physics
3-1.Vectors
easy
એક સદિશ બિંદુ $\mathop {\rm{A}}\limits^ \to \,$ શિરોલંબ ઊર્ધ્વ અને $\mathop B\limits^ \to $ બિંદુ ઉત્તરમાં છે $\mathop A\limits^ \to \,\, \times \mathop B\limits^ \to $ નો સદિશ ગુણાકાર શું હશે ?
Aશૂન્ય સદિશ
Bપશ્ચિમ દિશામાં
Cપૂર્વ દિશામાં
Dશિરોલંબ અધોદિશામાં
Solution
Here $z$-axis is vertically upward means normal to plane of paper as shown in figure.
Thus, $\vec{A}=A \hat{k}$ and $\vec{B}=B \hat{j}$
So, $\overrightarrow{ A } \times \overrightarrow{ B }= A \hat{ k } \times \overrightarrow{ Bj }=- AB \hat{ i }$
Thus, it is along negative $x$-axis means along west.
Thus, $\vec{A}=A \hat{k}$ and $\vec{B}=B \hat{j}$
So, $\overrightarrow{ A } \times \overrightarrow{ B }= A \hat{ k } \times \overrightarrow{ Bj }=- AB \hat{ i }$
Thus, it is along negative $x$-axis means along west.
Standard 11
Physics