बिन्दु $(h, 0)$ से गुजरने वाली ऊर्र्वाधर रेखा दीर्घवृत्त $\frac{x^2}{4}+\frac{y^2}{3}=1$ को बिन्दुओं $P$ तथा $Q$ पर काटती है। माना कि बिन्दुओं $P$ तथा $Q$ पर दीर्घवृत्त की स्पर्श रेखाएँ बिन्दु $R$ पर मिलती है। यदि $\Delta(h)=$ त्रिभुज $P Q R$ का क्षेत्रफल $\Delta_1=\max _{1 / 2 \leq h \leq 1} \Delta(h)$ और $\Delta_2=\min _{1 / 2 \leq h \leq 1} \Delta(h)$ है, तब $\frac{8}{\sqrt{5}} \Delta_1-8 \Delta_2=$
$6$
$7$
$8$
$9$
$x$ अक्ष से ${60^o}$ का कोण बनाने वाली दीर्घवृत्त ${x^2} + 16{y^2} = 16$ की स्पर्श रेखा का समीकरण है
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के केन्द्र से इसकी किसी स्पर्श रेखा पर डाले गये लम्ब के पाद का बिन्दुपथ है
$\lambda $ के किस मान के लिए, रेखा $2x - \frac{8}{3}\lambda y = - 3$ शांकव ${x^2} + \frac{{{y^2}}}{4} = 1$ का अभिलम्ब है
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के बिन्दु $'\theta '$ की नाभि से दूरी होगी
मान लीजिए $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,a > b$, एक दीर्घवृत है जिसकी नाभियाँ $F_1$ एवं $F_2$ हैं। $A O$ इसकी अर्धलघु $(semi-minor)$ अक्ष है, और $O$ दीर्घवृत का केंद्र है। रेखाएँ $A F_1$ एवं $A F_2$ को बढ़ाने पर वो दीर्घवृत को पुन: क्रमशः $B$ एवं $C$ बिन्दुओं पर काटती हैं। मान लीजिए कि $A B C$ एक समबाहु त्रिभुज है, तब दीर्घवृत की उत्केन्द्रता निम्न है :