यदि दीर्घवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{ b ^2}=1$, रेखा $\frac{ x }{7}+\frac{ y }{2 \sqrt{6}}=1$ को $x$-अक्ष पर तथा रेखा $\frac{ x }{7}-\frac{ y }{2 \sqrt{6}}=1$ को $y$-अक्ष पर मिलता है, तो दीर्घवृत्त की उत्केन्द्रता है।
$\frac{5}{7}$
$\frac{2 \sqrt{6}}{7}$
$\frac{3}{7}$
$\frac{2 \sqrt{5}}{7}$
अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ पर दो बिन्दु $P(a\sec \theta ,\;b\tan \theta )$ और $Q(a\sec \phi ,\;b\tan \phi )$ हैं, जहाँ $\theta + \phi = \frac{\pi }{2}$ है। यदि $P$ और $Q$ पर अभिलम्ब एक दूसरे को बिन्दु $(h, k)$ पर काटते हैं, तो $k$ का मान है
दीर्घवृत्त का समीकरण जिसकी उत्केन्द्रता $\frac{1}{2}$ तथा नाभियाँ $( \pm {\rm{ }}1,\;0)$ हैं, है
$x$ अक्ष से ${60^o}$ का कोण बनाने वाली दीर्घवृत्त ${x^2} + 16{y^2} = 16$ की स्पर्श रेखा का समीकरण है
मानक रूप में एक दीर्घवृत्त के लघु अक्ष (y-अक्ष के अनुदिश) की लम्बाई $\frac{4}{\sqrt{3}}$ है। यदि यह दीर्घवृत्त, रेखा $x +6 y =8$ को स्पर्श करता है, तो इसकी उत्केन्द्रता है
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ व वृत्त ${x^2} + {y^2} = ab$ का प्रतिच्छेद कोण है