दीर्घवृत्त $4{x^2} + 9{y^2} = 1$ पर वे बिन्दु, जहाँ पर इसकी स्पर्श रेखाएँ, रेखा $8x = 9y$ के समान्तर हैं, है
$\left( {\frac{2}{5},\;\frac{1}{5}} \right)$
$\left( { - \frac{2}{5},\;\frac{1}{5}} \right)$
$\left( { \frac{2}{5},\; - \frac{1}{5}} \right)$
$(b) $ और $ (c)$
रेखा $12 x \cos \theta+5 y \sin \theta=60$ निम्न में से किस वक्र की स्पर्श रेखा है?
$x$ अक्ष से ${60^o}$ का कोण बनाने वाली दीर्घवृत्त ${x^2} + 16{y^2} = 16$ की स्पर्श रेखा का समीकरण है
माना कि $E_1$ और $E_2$ दो दीर्घवृत हैं जिनके केन्द्र मूलबीन्दु हैं। $E_1$ और $E_2$ की दीर्घ अक्षायें क्रमशः $x$-अक्ष और $y$-अक्ष पर स्थित हैं। माना कि $S: x^2+(y-1)^2=2$ एक वृत्त है। सरल रेखा $x+y=3$, वक्रों $S, E_1$ और $E_2$ को क्रमशः $P, Q$ और $R$ पर स्पर्श करती है। माना कि $P Q=P R=\frac{2 \sqrt{2}}{3}$ है। यदि $e_1$ और $e_2$ क्रमशः $E_1$ और $E_2$ की उत्केन्द्रता (eccentricities) हैं, तब सही कथन है
$(A)$ $e_1^2+e_2^2=\frac{43}{40}$
$(B)$ $e_1 e_2=\frac{\sqrt{7}}{2 \sqrt{10}}$
$(C)$ $\left|e_1^2-e_2^2\right|=\frac{5}{8}$
$(D)$ $e_1 e_2=\frac{\sqrt{3}}{4}$
एक दीर्घवृत्त एक गोल धागे से बनाया जाता है जो दो पिनों के ऊपर से होकर गुजरता है । यदि इस प्रकार बने दीर्घवृत्त के अक्ष क्रमश: $6$ सेमी व $4$ सेमी हों, तो धागे की लम्बाई और पिनों के बीच की दूरी सेमी में क्रमश: होगी
यदि नियताओं के बीच की दूरी नाभियों के बीच की दूरी की तीन गुनी हो तो दीर्घवृत्त की उत्केन्द्रता होगी