10-2. Parabola, Ellipse, Hyperbola
medium

दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$

Option A
Option B
Option C
Option D

Solution

The given equation is $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$

Here, the denominator of $\frac{x^{2}}{36}$ is greater than the denominator of $\frac{y^{2}}{16}$

Therefore, the major axis is along the $x-$ axis, while the minor axis is along the $y-$ axis

On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ we obtain $a=6$ and $b=4$

$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{36-16}=\sqrt{20}=2 \sqrt{5}$

Therefore,

The coordinates of the foci are $(2 \sqrt{5}, 0)$ and $(-2 \sqrt{5}, 0)$

The coordinates of the vertices are $(6,\,0)$ and $(-6,\,0)$

Length of major axis $=2 a=12$

Length of minor axis $=2 b=8$

Eccentricity, $e=\frac{c}{a}=\frac{2 \sqrt{5}}{6}=\frac{\sqrt{5}}{3}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 16}{6}=\frac{16}{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.