दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$
The given equation is $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$
Here, the denominator of $\frac{x^{2}}{36}$ is greater than the denominator of $\frac{y^{2}}{16}$
Therefore, the major axis is along the $x-$ axis, while the minor axis is along the $y-$ axis
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ we obtain $a=6$ and $b=4$
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{36-16}=\sqrt{20}=2 \sqrt{5}$
Therefore,
The coordinates of the foci are $(2 \sqrt{5}, 0)$ and $(-2 \sqrt{5}, 0)$
The coordinates of the vertices are $(6,\,0)$ and $(-6,\,0)$
Length of major axis $=2 a=12$
Length of minor axis $=2 b=8$
Eccentricity, $e=\frac{c}{a}=\frac{2 \sqrt{5}}{6}=\frac{\sqrt{5}}{3}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 16}{6}=\frac{16}{3}$
एक दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^x}=1(a > b)$, एवं एक परवलय $x^2=4(y+b)$ इस प्रकार हैं कि दीर्घवृत्त की दो नाभियाँ एवं परवलय के नाभिलम्ब के अन्तःबिंदु $(end\,points)$ एक वर्ग के शीर्ष हैं | दीर्घर्वृत की उत्केन्द्रता ?
यदि सरल रेखा $y = mx + c$, दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ की स्पर्श रेखा हो, तो $c$ का मान होगा
यदि दीर्घवृत्त के बिन्दु $P$ पर खींचा गया अभिलम्ब दीर्घअक्ष और लुघअक्ष को क्रमश: $G$ तथा $g$ पर काटे तथा $C$ यदि उस दीर्घवृत्त का केन्द्र हो, तो
दीर्घवृत्त $9{x^2} + 5{y^2} = 45$ के बिन्दु $ (0, 3)$ पर अभिलम्ब का समीकरण है
दीर्घवृत्त ${x^2} + 3{y^2} = 6$ के केन्द्र से $2$ इकाई दूरी पर दीर्घवृत्त पर स्थित किसी बिन्दु का उत्केन्द्र कोण है