A wall is inclined to the floor at an angle of $135^{\circ}$. A ladder of length $l$ is resting on the wall. As the ladder slides down, its mid-point traces an arc of an ellipse. Then, the area of the ellipse is
$\frac{\pi l^2}{4}$
$\pi l^2$
$4 \pi l^2$
$2 \pi l^2$
The ellipse $ 4x^2 + 9y^2 = 36$ and the hyperbola $ 4x^2 -y^2 = 4$ have the same foci and they intersect at right angles then the equation of the circle through the points of intersection of two conics is
If the maximum distance of normal to the ellipse $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$, from the origin is $1$ , then the eccentricity of the ellipse is:
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{4}+\frac{y^2} {25}=1$.
Let $F_1$ & $F_2$ be the foci of an ellipse $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{9} = 1$ such that a ray from $F_1$ strikes the elliptical mirror at the point $P$ and get reflected. Then equation of angle bisector of the angle between incident ray and reflected ray can be
An ellipse is inscribed in a circle and a point within the circle is chosen at random. If the probability that this point lies outside the ellipse is $2/3 $ then the eccentricity of the ellipse is :