A wall is inclined to the floor at an angle of $135^{\circ}$. A ladder of length $l$ is resting on the wall. As the ladder slides down, its mid-point traces an arc of an ellipse. Then, the area of the ellipse is

211844-q

  • [KVPY 2016]
  • A

    $\frac{\pi l^2}{4}$

  • B

    $\pi l^2$

  • C

    $4 \pi l^2$

  • D

    $2 \pi l^2$

Similar Questions

If the lines $x -2y = 12$ is tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ at the point $\left( {3,\frac{-9}{2}} \right)$, then the length of the latus rectum of the ellipse is

  • [JEE MAIN 2019]

The locus of a variable point whose distance from $(-2, 0)$ is $\frac{2}{3}$ times its distance from the line $x = - \frac{9}{2}$, is

  • [IIT 1994]

If the chord through the point whose eccentric angles are $\theta \,\& \,\phi $ on the ellipse,$(x^2/a^2) + (y^2/b^2) = 1$  passes through the focus, then the value of $ (1 + e)$ $\tan(\theta /2) \tan(\phi /2)$ is

The eccentricity of an ellipse, with its centre at the origin, is $\frac{1}{2}$. If one of the directrices is $x = 4$, then the equation of the ellipse is

  • [AIEEE 2004]

For the ellipse $\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{28}} = 1$, the eccentricity is