- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
Number of tangents to the circle $x^2 + y^2 = 3$ , which are normal to the ellipse $4x^2 + 9y^2 = 36$ , is
A
$0$
B
$1$
C
$2$
D
$3$
Solution
$3x\sec \theta – 2y\cos ec\theta = 5$
$\frac{5}{{\sqrt {9{{\sec }^2}\theta + 4\cos e{c^2}\theta } }} = \sqrt 3 $
But min. value of $9{\sec ^2}\theta + 4\cos e{c^2}\theta $ is $25$
$\therefore$ no tangent
Standard 11
Mathematics