In an ellipse, with centre at the origin, if the difference of the lengths of major axis and minor axis is $10$ and one of the foci is at $(0, 5\sqrt 3 )$, then the length of its latus rectum is
$6$
$5$
$8$
$10$
The line $12 x \,\cos \theta+5 y \,\sin \theta=60$ is tangent to which of the following curves?
The position of the point $(1, 3)$ with respect to the ellipse $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$
Consider an ellipse with foci at $(5,15)$ and $(21,15)$. If the $X$-axis is a tangent to the ellipse, then the length of its major axis equals
Let $L$ is distance between two parallel normals of , $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\,\,\,a > b$ then maximum value of $L$ is
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $36 x^{2}+4 y^{2}=144$