In an ellipse, with centre at the origin, if the difference of the lengths of major axis and minor axis is $10$ and one of the foci is at $(0, 5\sqrt 3 )$, then the length of its latus rectum is

  • [JEE MAIN 2019]
  • A

    $6$

  • B

    $5$

  • C

    $8$

  • D

    $10$

Similar Questions

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $4 x ^{2}+9 y ^{2}=36$

The point $(4, -3)$ with respect to the ellipse $4{x^2} + 5{y^2} = 1$

A man running a racecourse notes that the sum of the distances from the two flag posts from him is always $10 \,m$ and the distance between the flag posts is $8\, m$ Find the equation of the posts traced by the man.

Let $P$ is any point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ . $S_1$ and $S_2$ its foci then maximum area of $\Delta PS_1S_2$ is (in square units)

If $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, then $x$ and $y$ respectively lie in the intervals:

  • [JEE MAIN 2021]