A wave is reflected from a rigid support. The change in phase on reflection will be
$\pi /4$
$\pi /2$
$\pi$
$2\pi $
A string fixed at both ends resonates at a certain fundamental frequency. Which of the following adjustments would not affect the fundamental frequency?
A string wave equation is given $y=0.002 \sin (300 t-15 x)$ and mass density is $\mu=\frac{0.1\, kg }{m}$. Then find the tension in the string, (in $N$)
Unlike a laboratory sonometer, a stringed instrument is seldom plucked in the middle. Supposing a sitar string is plucked at about $\frac{1}{4}$th of its length from the end. The most prominent harmonic would be
A hollow pipe of length $0.8 \mathrm{~m}$ is closed at one end. At its open end a $0.5 \mathrm{~m}$ long uniform string is vibrating in its second harmonic and it resonates with the fundamental frequency of the pipe. If the tension in the wire is $50 \mathrm{~N}$ and the speed of sound is $320 \mathrm{~ms}^{-1}$, the mass of the string is
The equation of a wave on a string oflinear mass density $0.04$ $kgm^{-1}$ is given by
$y = 0.02sin\left[ {2\pi \left( {\frac{t}{{0.04\left( s \right)}} - \frac{x}{{0.50\left( m \right)}}} \right)} \right]m$ The tension in the string is .... $N$