Gujarati
Hindi
9-1.Fluid Mechanics
normal

Two small drops of mercury, each of radius $R$ coalesce to form a single large drop. The radio of the total surface energies before and after the change is

A

$1 : 2^{1/3}$

B

$2^{1/3} : 1$

C

$2 : 1$

D

$1 : 2$

Solution

Let $\mathrm{r}$ be radius of common drop

$\frac{4}{3} \pi r^{3}=2 \times \frac{4}{3} \pi R^{3}$

$\mathrm{r}=(2)^{\frac{1}{3}} \mathrm{R}$

Surface energy before the coalesce

$=2 \times 4 \pi \mathrm{R}^{2} \mathrm{T}$

Surface energy after the coalesce $=4 \pi r^{2} T$

 Ratio $=\frac{2 \times 4 \pi \mathrm{R}^{2} \mathrm{T}}{4 \pi \mathrm{r}^{2} \mathrm{T}}=\frac{2 \mathrm{R}^{2}}{2^{2 / 3} \mathrm{R}^{2}}$

$=\frac{2^{\frac{1}{3}} \cdot 2^{\frac{2}{3}}}{2^{\frac{2}{3}}}=\frac{2^{\frac{1}{3}}}{1} $

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.