About $5 \%$ of the power of a $100\; W$ light bulb is converted to visible radiation. What is the average intensity of visible radiation
$(a)$ at a distance of $1 \;m$ from the bulb?
$(b)$ at a distance of $10\; m ?$ Assume that the radiation is emitted isotropically and neglect reflection.
Power rating of bulb, $P=100 W$
It is given that about $5 \%$ of its power is converted into visible radiation.
$\therefore$ Power of visible radiation, $P^{\prime}=\frac{5}{100} \times 100=5 W$
Hence, the power of visible radiation is $5 W$.
$(a)$ Distance of a point from the bulb, $d =1 m$ Hence, intensity of radiation at that point is given as:
$I=\frac{P^{\prime}}{4 \pi d^{2}}$
$=\frac{5}{4 x(1)^{2}}=0.398 W / m^{2}$
$(b)$ Distance of a point from the bulb, $d _{1}=10 m$ Hence, intensity of radiation at that point is given as:
$I=\frac{P^{\prime}}{4 \pi\left(d_{1}\right)^{2}}$
$=\frac{5}{4 x(10)^{2}}=0.00398 W / m ^{2}$
A $27\, mW$ lager beam has a cross -sectional area of $10\, mm^2$. The magnitude of the maximum electric field in this electromagnetic wave is given by:........$kV/m$ [Given permittivity of space ${ \in _0} = 9 \times {10^{ - 12}}\, SI\, units$, speed of light $c = 3 \times 10^8\, m/s$]
Intensity of sunlight is observed as $0.092\, {Wm}^{-2}$ at a point in free space. What will be the peak value of magnetic field at that point? $\left(\sigma_{0}=8.85 \times 10^{-12}\, {C}^{2} \,{N}^{-1} \,{m}^{-2}\right.$ )
A radar sends an electromagnetic signal of electric field $\left( E _{0}\right)=2.25\,V / m$ and magnetic field $\left( B _{0}\right)=1.5 \times 10^{-8}\,T$ which strikes a target on line of sight at a distance of $3\,km$ in a medium After that, a pail of signal $(echo)$ reflects back towards the radar vitli same velocity and by same path. If the signal was transmitted at time $t_{0}$ from radar. then after how much time (in $\times 10^{-5}\,s$) echo will reach to the radar?
In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of $2.0 \times 10^{10}\; Hz$ and amplitude $48\; Vm ^{-1}$
$(a)$ What is the wavelength of the wave?
$(b)$ What is the amplitude of the oscillating magnetic field?
$(c)$ Show that the average energy density of the $E$ field equals the average energy density of the $B$ field. $\left[c=3 \times 10^{8} \;m s ^{-1} .\right]$
A particle of mass $M$ and positive charge $Q$, moving with a constant velocity $\overrightarrow{ u }_1=4 \hat{ i } ms ^{-1}$, enters a region of uniform static magnetic field normal to the $x-y$ plane. The region of the magnetic field extends from $x=0$ to $x$ $=L$ for all values of $y$. After passing through this region, the particle emerges on the other side after $10$ milliseconds with a velocity $\overline{ u }_2=2(\sqrt{3} \hat{ i }+\hat{ j }) ms ^{-1}$. The correct statement$(s)$ is (are) :
$(A)$ The direction of the magnetic field is $-z$ direction.
$(B)$ The direction of the magnetic field is $+z$ direction
$(C)$ The magnitude of the magnetic field $\frac{50 \pi M }{3 Q }$ units.
$(D)$ The magnitude of the magnetic field is $\frac{100 \pi M}{3 Q}$ units.