Activity of a radioactive sample decreases to $(1/3)^{rd}$ of its original value in $3\, days$. Then, in $9\, days$ its activity will become
$(1/27)$ of the original value
$(1/9)$ of the original value
$(1/18)$ of the original value
$(1/3)$ of the original value
Match List $I$ (Wavelength range of electromagnetic spectrum) with List $II$ (Method of production of these waves) and select the correct option from the options given below the lists
List $I$ | List $II$ |
$(1)$ $700\, nm$ to $1\,mm$ | $(i)$ Vibration of atoms and molecules |
$(2)$ $1\,nm$ to $400\, nm$ | $(ii)$ Inner shell electrons in atoms moving from one energy level to a lower level |
$(3)$ $ < 10^{-3}\,nm$ | $(iii)$ Radioactive decay of the nucleus |
$(4)$ $1\,mm$ to $0.1\,m$ | $(iv)$ Magnetron valve |
Starting with a sample of pure ${}^{66}Cu,\frac{7}{8}$ of it decays into $Zn$ in $15\, minutes$. The corresponding half life is..........$minutes$
At time $t=0$, a container has $N_{0}$ radioactive atoms with a decay constant $\lambda$. In addition, $c$ numbers of atoms of the same type are being added to the container per unit time. How many atoms of this type are there at $t=T$ ?
$1\, Curie $ is equal to
The half life of radioactive Radon is $3.8\, days$. The time at the end of which $1/20^{th}$ of the Radon sample will remain undecayed is ............ $days$ (Given $log_{10}e = 0.4343$ )