Activity of a radioactive sample decreases to $(1/3)^{rd}$ of its original value in $3\, days$. Then, in $9\, days$ its activity will become

  • [AIIMS 2009]
  • A

    $(1/27)$ of the original value

  • B

    $(1/9)$ of the original value

  • C

    $(1/18)$ of the original value

  • D

    $(1/3)$ of the original value

Similar Questions

Match List $I$ (Wavelength range of electromagnetic spectrum) with List $II$ (Method of production of these waves) and select the correct option from the options given below the lists

List $I$ List $II$
$(1)$ $700\, nm$ to $1\,mm$ $(i)$ Vibration of atoms and molecules
$(2)$ $1\,nm$ to $400\, nm$ $(ii)$ Inner shell electrons in atoms moving from one energy level to a lower level
$(3)$ $ < 10^{-3}\,nm$ $(iii)$ Radioactive decay of the nucleus
$(4)$ $1\,mm$ to $0.1\,m$ $(iv)$ Magnetron valve

  • [JEE MAIN 2014]

Starting with a sample of pure ${}^{66}Cu,\frac{7}{8}$ of it decays into $Zn$ in $15\, minutes$. The corresponding half life is..........$minutes$

  • [AIIMS 2008]

At time $t=0$, a container has $N_{0}$ radioactive atoms with a decay constant $\lambda$. In addition, $c$ numbers of atoms of the same type are being added to the container per unit time. How many atoms of this type are there at $t=T$ ?

  • [KVPY 2010]

$1\, Curie $ is equal to

The half life of radioactive Radon is $3.8\, days$. The time at the end of which $1/20^{th}$ of the Radon sample will remain undecayed is  ............ $days$ (Given $log_{10}e = 0.4343$ )