An alpha particle colliding with one of the electrons in a gold atom loses

  • A

    Most of its momentum

  • B

    About $\frac{1}{3}$ rd of its momentum

  • C

    Little of its energy

  • D

    Most of its energy

Similar Questions

The ratio of speed of an electron in ground state in Bohrs first orbit of hydrogen atom to velocity of light in air is

In an alpha particle scattering experiment distance of closest approach for the $\alpha$ particle is $4.5 \times 10^{-14} \mathrm{~m}$. If target nucleus has atomic number $80$ , then maximum velocity of $\alpha$-particle is . . . . .. $\times 10^5$ $\mathrm{m} / \mathrm{s}$ approximately.

$\left(\frac{1}{4 \pi \epsilon_0}=9 \times 10^9 \mathrm{SI}\right.$ unit, mass of $\alpha$ particle $=$ $\left.6.72 \times 10^{-27} \mathrm{~kg}\right)$

  • [JEE MAIN 2024]

The wavelength of the first line of Balmer series of hydrogen atom is $\lambda \,\mathop A\limits^o $. The wavelength of this line of a double ionised lithium atom $(Z = 3)$is

Give the relationship between impact parameter and scattering angle. 

A proton is fired from very far away towards a nucleus with charge $Q=120 \ e$, where $e$ is the electronic charge. It makes a closest approach of $10 \ fm$ to the nucleus. The de Brogle wavelength (in units of $fm$ ) of the proton at its start is :

(take the proton mass, $m _0=(5 / 3) \times 10^{-27} kg , h / e =4.2 \times 10^{-15} J / s / C ; \frac{1}{4 \pi \varepsilon_0}=9 \times 10^9 m / F ; 1 fm =10^{-15} m$ ) 

  • [IIT 2012]