ડાઇપોલને ઘેરતી યાઈચ્છિક સપાટી વિચારો તો સપાટીમાંથી પસાર થતું ફલક્સ કેટલું હશે ?
ગોસના નિયમ પરથી બંધ સપાટી સાથે સંકળાયેલ ફલક્સ $\phi=\frac{\Sigma q}{\epsilon_{0}}$ જ્યાં $q$ એ બંધ સપાટી વડે ઘેરાતો પરિણામી વિદ્યુતભાર છે.
ડાઈપોલ પરનો પરિણામી વિદ્યુતભાર $=-q+q=0$
$\therefore$ ડાઈપોલને ધેરતી બંધ સપાટી સાથે સંકળાયેલ ફલક્સ,
$\phi=\frac{-q+q}{\epsilon_{0}}=0$
આકૃતિ માં દર્શાવેલ વક્રો પૈકી કયો/યા વક્ર સ્થિતવિદ્યુત ક્ષેત્ર રેખાઓ રજૂ કરી શકશે નહિ?
એકમ ક્ષેત્રફળમાંથી પસાર થતી ક્ષેત્રરેખાની સંખ્યા અંતર પર કેવી રીતે આધાર રાખે છે ?
એક અનંત રેખીય વિદ્યુતભાર $7 \,cm$ ત્રિજ્યાના અને $1 \,m$ લંબાઈના નળાકારની અક્ષ પાસે છે. જો નળાકારની વક્ર સપાટી પરના કોઈપણ બિંદુએ વિદ્યુતક્ષેત્ર $250 \,NC ^{-1}$ નળાકારમાંથી કુલ વિદ્યુત ફ્લક્સ .......... $Nm ^2 C ^{-1}$ છે.
વિદ્યુતક્ષેત્રમાં બે ગાઉસિયન ઘન આકૃતિમાં દર્શાવેલ છે. તીર અને મૂલ્ય એ વિદ્યુતક્ષેત્રની દિશા અને મૂલ્ય ($N-m^2/C$) દર્શાવે છે. તો ઘનમા રહેલો કુલ વિદ્યુતભાર કેટલો હશે?
એક સમઘનને $\overrightarrow{{E}}=150\, {y}^{2}\, \hat{{j}}$ જેટલા વિદ્યુતક્ષેત્રની અંદર મૂકવામાં આવે છે. સમઘનની બાજુની લંબાઈ $0.5 \,{m}$ અને તેને આકૃતિમાં દર્શાવ્યા પ્રમાણે મૂકવામાં આવે છે. સમઘનની અંદરનો વિદ્યુતભાર $(\times 10^{-11} {C}$ માં) કેટલો હશે?