7.Gravitation
hard

An astronaut takes a ball of mass $m$ from earth to space. He throws the ball into a circular orbit about earth at an altitude of $318.5 \mathrm{~km}$. From earth's surface to the orbit, the change in total mechanical energy of the ball is $x \frac{\mathrm{GM}_e \mathrm{~m}}{21 R_e}$. The value of $x$ is (take $R_{\mathrm{e}}=6370 \mathrm{~km}$ ):

A

$11$

B

$9$

C

$12$

D

$10$

(JEE MAIN-2024)

Solution

$\mathrm{h}=318.5 \approx\left(\frac{\mathrm{R}_{\mathrm{e}}}{20}\right)$

$\mathrm{T} \cdot \mathrm{E}_{\mathrm{i}}=\frac{-\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{R}_{\mathrm{e}}}$

$\mathrm{T} \cdot \mathrm{E}_{\mathrm{r}}=\frac{-\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{2\left(\mathrm{R}_{\mathrm{e}}+\mathrm{h}\right)}=\frac{-\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{2\left(\mathrm{R}_{\mathrm{e}}+\frac{\mathrm{R}_{\mathrm{e}}}{20}\right)}$

$\Rightarrow \mathrm{T} \cdot \mathrm{E}_{\mathrm{f}}=\frac{-10 \mathrm{GM}_{\mathrm{e}} \mathrm{m}}{21 \mathrm{R}_{\mathrm{e}}}$

Change in total mechanical energy

$=\mathrm{TE}_{\mathrm{f}}-\mathrm{TE}$

$=\frac{\mathrm{GM}_{\mathrm{i}} \mathrm{m}}{\mathrm{Re}}\left[1-\frac{10}{21}\right]=\frac{11 \mathrm{GM}_{\mathrm{e}} \mathrm{m}}{21 \mathrm{Re}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.