An electron (charge = $1.6 \times {10^{ - 19}}$ $coulomb$) is accelerated through a potential of $1,00,000$ $volts$. The energy required by the electron is

  • A

    $1.6 \times {10^{ - 24}}\, joule$

  • B

    $1.6 \times {10^{ - 14}}\,\,erg$

  • C

    $0.53 \times {10^{ - 14}}\,joule$

  • D

    $1.6 \times {10^{ - 14}}\,joule$

Similar Questions

Define an electrostatic potential energy.

An elementary particle of mass $m$ and charge $ + e$ is projected with velocity $v$ at a much more massive particle of charge $Ze,$ where $Z > 0.$What is the closest possible approach of the incident particle

In space of horizontal $EF$ ($E = (mg)/q$) exist as shown in figure and a mass $m$ attached at the end of a light rod. If mass $m$ is released from the position shown in figure find the angular velocity of the rod when it passes through the bottom most position

A proton has a mass $1.67 \times 10^{-27} \,kg$ and charge $+1.6 \times 10^{-19} \,C$. If the proton is accelerated through a potential difference of million volts, then the kinetic energy is ......... $J$

Two points $P$ and $Q$ are maintained at the potentials of $10\, V$ and $-4\,V$, respectively. The work done in moving $100$ electrons from $P$ and $Q$ is