An electron having charge ‘$e$’ and mass ‘$m$’ is moving in a uniform electric field $E$. Its acceleration will be

  • [AIIMS 2002]
  • A

    $\frac{{{e^2}}}{m}$

  • B

    $\frac{{{E^2}e}}{m}$

  • C

    $\frac{{eE}}{m}$

  • D

    $\frac{{mE}}{e}$

Similar Questions

Three particles are projected in a uniform electric field with same velocity perpendicular to the field as shown. Which particle has highest charge to mass ratio?

A proton sits at coordinates $(x, y) = (0, 0)$, and an electron at $(d, h)$, where $d >> h$. At time $t = 0$, $a$ uniform electric field $E$ of unknown magnitude but pointing in the positive $y$ direction is turned on. Assuming that $d$ is large enough that the proton-electron interaction is negligible, the $y$ coordinates of the two particles will be equal (at equal time)

An electron is released from the bottom plate $A$ as shown in the figure $(E = 10^4\, N/C)$. The velocity of the electron when it reaches plate $B$ will be nearly equal to

A body having specific charge $8\,\mu {C} / {g}$ is resting on a frictionless plane at a distance $10\, {cm}$ from the wall (as shown in the figure). It starts moving towards the wall when a uniform electric field of $100 \,{V} / {m}$ is applied horizontally toward the wall. If the collision of the body with the wall is perfectly elastic, then the time period of the motion will be $....\, S.$

  • [JEE MAIN 2021]

A charged particle of mass $m = 2\ kg$ and charge $1μC$ is projected from a horizontal ground at an angle $\theta  = 45^o$ with speed $10\ ms^{-1}$ . In space, a horizontal electric field towards the direction of projection $E = 2 \times 10^7\ NC^{-1}$ exists. The range of the projectile is......$m$