Two charged particles traverse identical helical paths in a completely opposite sense in a uniform magnetic field $B = B_0 \hat k$ .
They have equal $z-$ components of momenta
They must have equal charges
They necessarily represent a particle, antiparticle pair
The chrge to mass ratio satisfy ${\left( {\frac{e}{m}} \right)_1} + {\left( {\frac{e}{m}} \right)_2} = 0$
For a positively charged particle moving in a $x-y$ plane initially along the $x$-axis, there is a sudden change in its path due to the presence of electric and/or magnetic fields beyond $P$. The curved path is shown in the $x-y$ plane and is found to be non-circular. Which one of the following combinations is possible
An electron is moving along $+x$ direction with a velocity of $6 \times 10^{6}\, ms ^{-1}$. It enters a region of uniform electric field of $300 \,V / cm$ pointing along $+ y$ direction. The magnitude and direction of the magnetic field set up in this region such that the electron keeps moving along the $x$ direction will be
A charge of $1\,C$ is moving in a magnetic field of $0.5\,Tesla$ with a velocity of $10\,m/sec$ Perpendicular to the field. Force experienced is.....$N$
A charge having $q/m$ equal to $10^8\, C/kg$ and with velocity $3 \times 10^5\, m/s$ enters into a uniform magnetic field $0.3\, tesla$ at an angle $30^o$ with direction of field. The radius of curvature will be ......$cm$
Two ions have equal masses but one is singly ionized and second is doubly ionized. They are projected from the same place in a uniform transverse magnetic field with same velocity then:
$(a)$ Both ions will go along circles of equal radii
$(b)$ The radius of circle described by the single ionized charge is double of radius of circle described by doubly ionized charge
$(c)$ Both circle do not touches to each other
$(d)$ Both circle touches to each other