An electron moving with the speed $5 \times {10^6}$ per sec is shooted parallel to the electric field of intensity $1 \times {10^3}\,N/C$. Field is responsible for the retardation of motion of electron. Now evaluate the distance travelled by the electron before coming to rest for an instant (mass of $e = 9 \times {10^{ - 31}}\,Kg.$ charge $ = 1.6 \times {10^{ - 19}}\,C)$
$7\, m$
$0.7\, mm$
$7\, cm$
$0.7\, cm$
An electron is rotating around an infinite positive linear charge in a circle of radius $0.1 \,m$, if the linear charge density is $1 \,\mu C / m$, then the velocity of electron in $m / s$ will be ...... $\times 10^7$
In an ink-jet printer, an ink droplet of mass $m$ is given a negative charge $q$ by a computer-controlled charging unit, and then enters at speed $v$ in the region between two deflecting parallel plates of length $L$ separated by distance $d$ (see figure below). All over this region exists a downward electric field which you can assume to be uniform. Neglecting the gravitational force on the droplet, the maximum charge that can be given so that it will not hit a plate is close to :
A uniform electric field, $\vec{E}=-400 \sqrt{3} \hat{y} NC ^{-1}$ is applied in a region. A charged particle of mass $m$ carrying positive charge $q$ is projected in this region with an initial speed of $2 \sqrt{10} \times 10^6 ms ^{-1}$. This particle is aimed to hit a target $T$, which is $5 m$ away from its entry point into the field as shown schematically in the figure. Take $\frac{ q }{ m }=10^{10} Ckg ^{-1}$. Then-
$(A)$ the particle will hit $T$ if projected at an angle $45^{\circ}$ from the horizontal
$(B)$ the particle will hit $T$ if projected either at an angle $30^{\circ}$ or $60^{\circ}$ from the horizontal
$(C)$ time taken by the particle to hit $T$ could be $\sqrt{\frac{5}{6}} \mu s$ as well as $\sqrt{\frac{5}{2}} \mu s$
$(D)$ time taken by the particle to hit $T$ is $\sqrt{\frac{5}{3}} \mu s$
A uniform electric field of $10\,N / C$ is created between two parallel charged plates (as shown in figure). An electron enters the field symmetrically between the plates with a kinetic energy $0.5\,eV$. The length of each plate is $10\,cm$. The angle $(\theta)$ of deviation of the path of electron as it comes out of the field is $.........$(in degree).
An electron enters a parallel plate capacitor with horizontal speed $u$ and is found to deflect by angle $\theta$ on leaving the capacitor as shown below. It is found that $\tan \theta=0.4$ and gravity is negligible. If the initial horizontal speed is doubled, then the value of $\tan \theta$ will be