Gujarati
1. Electric Charges and Fields
normal

An electrostatic field line leaves at an angle $\alpha$ from point charge $q_{1}$ and connects with point charge $-q_{2}$ at an angle $\beta\left(q_{1}\right.$ and $q_{2}$ are positive) see figure below. If $q_{2}=\frac{3}{2} q_{1}$ and $\alpha=30^{\circ}$, then

A

$0^{\circ} < \beta<30^{\circ}$

B

$\beta=30^{\circ}$

C

$30^{\circ} < \beta \leq 60^{\circ}$

D

$60^{\circ} < \beta \leq 90^{\circ}$

(KVPY-2018)

Solution

$(a)$ Consider another symmetric field line below line joining centres of charges $q_{1}$ and $q_{2}$

In given situation, flux (field lines) leaving charge $q_{1}$ at a solid angle

$2 \alpha=$ flux terminating over charge $\psi _{2}$ at a solid angle $2 \beta$.

Clearly, in given situation

We can say that, flux leaving charge $q_{1}$ through a cone of semi-vertical angle $\alpha=$ flux terminating on charge $q _{2}$ through a cone of semi-vertical angle $\beta$.

'To calculate flux, we first find flux through an elemental ring of base of cone and then we integrate to get total flux.

Area of elemental ring,

$d A=2 \pi r d s=2 \pi R \sin \alpha \cdot R d \alpha$

Flux through elemental ring $( E \| d A )$

$d \phi=\frac{k Q}{R^{2}} \cdot 2 \pi R^{2} \sin \alpha d \alpha$

Total flux through base of cone

$\phi=\int\limits_{0}^{\alpha} \frac{k Q}{R^{2}} \cdot 2 \pi R^{2} \sin \alpha d \alpha$

$=k Q 2 \pi \int\limits_{0}^{\alpha} \sin \alpha d \alpha$

$\phi=\frac{Q}{2 \varepsilon_{0}} \cdot \cdot(1-\cos \alpha)$

So, equating flux of both cones, we get

$\frac{q_{1}}{2 \varepsilon_{0}}(1-\cos \alpha)=\frac{q_{2}}{2 \varepsilon_{0}}(1-\cos \beta)$

$\Rightarrow \quad q_{1}(1-\cos \alpha) =\frac{3}{2} q_{1}(1-\cos \beta)$

Substituting $\alpha=30^{\circ}$ in above equation, we get

$\Rightarrow \frac{2}{3}\left(1-\cos 30^{\circ}\right) =1-\cos \beta$

$\Rightarrow \frac{2}{3}\left(1-\frac{\sqrt{3}}{2}\right) =1-\cos \beta$

$\Rightarrow \cos \beta =1-\frac{2}{3}\left(1-\frac{\sqrt{3}}{2}\right)$

$\Rightarrow \cos \beta \approx 0.9$

So, angle $\beta$ is not more than $30^{\circ}$.

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.