चित्रानुसार एक स्थिरवैद्युत क्षेत्र रेखा, बिन्दु आवेश $q_1$ से कोण $\alpha$ पर निकलती है तथा बिन्दु आवेश $-q_2$ से कोण $\beta$ पर मिलती है। यहाँ $q _1$ तथा $q _2$ दोनों धनात्मक हैं। यदि $q _2=\frac{3}{2} q _1$ तथा $\alpha=30^{\circ}$, तब
$0^{\circ} < \beta<30^{\circ}$
$\beta=30^{\circ}$
$30^{\circ} < \beta \leq 60^{\circ}$
$60^{\circ} < \beta \leq 90^{\circ}$
आरेख में दर्शाए अनुसार $+12\, \mu C$ का कोई बिन्दु आवेश $12 \,cm$ भुजा वाले किसी वर्ग के केन्द्र के ऊर्ध्वाधर ऊपर $6 \,cm$ दूरी पर स्थित है। इस वर्ग से गुजरने वाले विधुत फ्लक्स का परिमाण $......\,\times 10^{3} Nm ^{2} / C$ होगा।
$\alpha $ भुजा वाले एक घन के केन्द्र पर एक विद्युत आवेश $q$ रखा गया है। इसके फलकों में से एक फलक पर वैद्युत अभिवाह (electric flux) का मान होगा
चार बंद पृष्ठ तथा उनके आवेश विन्यास को निम्न चित्र में दर्शाया गया है।
यदि उनके पृष्ठ से बद्ध वैद्युत फ्लक्स क्रमशः $\Phi_{1}, \Phi_{2^{\prime}} \Phi_{3}$ तथा $\Phi_{4}$ हों तो
एक घनाकार आयतन सतहों $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0$, $\mathrm{y}=\mathrm{a}, \mathrm{z}=0, \mathrm{z}=\mathrm{a}$ से परिबद्ध है। इस प्रभाग में विधुत क्षेत्र $\overrightarrow{\mathrm{E}}=\mathrm{E}_0 \mathrm{x} \hat{\mathrm{i}}$ दिया गया है, जहाँ $\mathrm{E}_0=4 \times 10^4 \mathrm{NC}^{-1} \mathrm{~m}^{-1}$ है। यदि $\mathrm{a}=2 \mathrm{~cm}$ है तो घनाकार आयतन में परिबद्ध आवेश $\mathrm{Q} \times 10^{-14} \mathrm{C}$ है। $\mathrm{Q}$ का मान______________ है। $\left(\epsilon_0=9 \times 10^{-12} \mathrm{C}^2 / \mathrm{Nm}^2\right)$
एक घन $\overrightarrow{ E }=150 y ^{2} \hat{ j }$ के विधुत क्षेत्र में रखा है। घन की भुजा $0.5\, m$ है तथा यह क्षेत्र में चित्रानुसार रखा है। घन के अन्दर आवेश $.....\times 10^{-11} {C}$ है।