An ellipse having foci at $(3, 1)$ and $(1, 1) $ passes through the point $(1, 3),$ then its eccentricity is

  • A

    $\sqrt 2  - 1$

  • B

    $\sqrt 3  - 1$

  • C

    $\frac{1}{2}\left( {\sqrt 2  - 1} \right)$

  • D

    $\frac{1}{2}\left( {\sqrt 3  - 1} \right)$

Similar Questions

Let $\mathrm{A}(\alpha, 0)$ and $\mathrm{B}(0, \beta)$ be the points on the line $5 x+7 y=50$. Let the point $P$ divide the line segment $A B$ internally in the ratio $7: 3$. Let $3 x-$ $25=0$ be a directrix of the ellipse $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and the corresponding focus be $S$. If from $S$, the perpendicular on the $\mathrm{x}$-axis passes through $\mathrm{P}$, then the length of the latus rectum of $\mathrm{E}$ is equal to

  • [JEE MAIN 2024]

The eccentricity of the ellipse $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ is

Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ be an ellipse, whose eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $\sqrt{14}$. Then the square of the eccentricity of $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is :

  • [JEE MAIN 2024]

A circle has the same centre as an ellipse and passes through the foci $F_1 \& F_2$  of the ellipse, such that the two curves intersect in $4$  points. Let $'P'$  be any one of their point of intersection. If the major axis of the ellipse is $17 $ and  the area of the triangle $PF_1F_2$ is $30$, then the distance between the foci is :

If any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ cuts off intercepts of length $h$ and $k$ on the axes, then $\frac{{{a^2}}}{{{h^2}}} + \frac{{{b^2}}}{{{k^2}}} = $