- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
An ellipse having foci at $(3, 1)$ and $(1, 1) $ passes through the point $(1, 3),$ then its eccentricity is
A
$\sqrt 2 - 1$
B
$\sqrt 3 - 1$
C
$\frac{1}{2}\left( {\sqrt 2 - 1} \right)$
D
$\frac{1}{2}\left( {\sqrt 3 - 1} \right)$
Solution
$S \equiv(3,1), S^{\prime} \equiv(1,1)$ and $P \equiv(1,3)$
$\Rightarrow P S=\sqrt{(3-1)^{2}+(1-3)^{2}}=2 \sqrt{2}, P S^{\prime}=\sqrt{(1-1)^{2}+(1-3)^{2}}=2$
Using definition of an ellipse $P S+P S^{\prime}=2 a \Rightarrow a=\sqrt{2}+1$
Also $S S^{\prime}=2 a e=2 \Rightarrow e=\frac{1}{a}=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1$
Standard 11
Mathematics