Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{16}+\frac {y^2} {9}=1$.
The given equation is $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ or $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{3^{2}}=1$
Here, the denominator of $\frac{x^{2}}{16}$ is greater than the denominator of $\frac{y^{2}}{9}$.
Therefore, the major axis is along the $x-$ axis, while the minor axis is along the $y-$ axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ we obtain $a=4$ and $b=3$
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{16-9}=\sqrt{7}$
Therefore,
The coordinates of the foci are $(\pm \sqrt{7}, \,0)$
The coordinates of the vertices are $(±4,\,0)$
Length of major axis $=2 a=8$
Length of minor axis $=2 b=6$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{7}}{4}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{4}=\frac{9}{2}$
If the maximum distance of normal to the ellipse $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$, from the origin is $1$ , then the eccentricity of the ellipse is:
The co-ordinates of the foci of the ellipse $3{x^2} + 4{y^2} - 12x - 8y + 4 = 0$ are
The equation of the normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ at the point $(a\cos \theta ,\;b\sin \theta )$ is
Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$ touching the ellipse at points $\mathrm{A}$ and $\mathrm{B}$.
$1.$ The coordinates of $\mathrm{A}$ and $\mathrm{B}$ are
$(A)$ $(3,0)$ and $(0,2)$
$(B)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
$(C)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $(0,2)$
$(D)$ $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
$2.$ The orthocentre of the triangle $\mathrm{PAB}$ is
$(A)$ $\left(5, \frac{8}{7}\right)$ $(B)$ $\left(\frac{7}{5}, \frac{25}{8}\right)$
$(C)$ $\left(\frac{11}{5}, \frac{8}{5}\right)$ $(D)$ $\left(\frac{8}{25}, \frac{7}{5}\right)$
$3.$ The equation of the locus of the point whose distances from the point $\mathrm{P}$ and the line $\mathrm{AB}$ are equal, is
$(A)$ $9 x^2+y^2-6 x y-54 x-62 y+241=0$
$(B)$ $x^2+9 y^2+6 x y-54 x+62 y-241=0$
$(C)$ $9 x^2+9 y^2-6 x y-54 x-62 y-241=0$
$(D)$ $x^2+y^2-2 x y+27 x+31 y-120=0$
Give the answer question $1,2$ and $3.$
A chord $PQ$ of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ subtends right angle at its centre. The locus of the point of intersection of tangents drawn at $P$ and $Q$ is-