Gujarati
10-2. Parabola, Ellipse, Hyperbola
normal

An ellipse inscribed in a semi-circle touches the circular arc at two distinct points and also touches the bounding diameter. Its major axis is parallel to the bounding diameter. When the ellipse has the maximum possible area, its eccentricity is

A

$\cdot \frac{1}{\sqrt{2}}$

B

$\frac{1}{2}$

C

$.. \frac{1}{\sqrt{3}}$

D

$\sqrt{\frac{2}{3}}$

(KVPY-2014)

Solution

(d)

Let equation of ellipse is

$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$

$\therefore$ Equation of circle is

$x^2+(y+b)^2=r^2$

Put $x^2=a^2-\frac{a^2 y^2}{b^2}$ in circle

$a^2-\frac{a^2 y^2}{b^2}+(y+b)^2=r^2$

$\Rightarrow\left(1-\frac{a^2}{b^2}\right) y^2+2 b y+\left(a^2+b^2-r^2\right)=0$

$D=0 \Rightarrow r^2=\frac{a^4}{a^2-b^2} \Rightarrow b=a \sqrt{1-\frac{a^2}{r^2}}$

Area of ellipse $=\pi a b$

$A=\pi a^2 \sqrt{1-\frac{a^2}{r^2}}$

$\frac{d A}{d a}=0 \Rightarrow a^2=\frac{2 r^2}{3} \Rightarrow a=\sqrt{\frac{2}{3} r}$

$\therefore \quad b=a \sqrt{1-\frac{2}{3}}=\frac{a}{\sqrt{3}}$

$\Rightarrow \quad e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{1}{3}}=\sqrt{\frac{2}{3}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.