An ellipse inscribed in a semi-circle touches the circular arc at two distinct points and also touches the bounding diameter. Its major axis is parallel to the bounding diameter. When the ellipse has the maximum possible area, its eccentricity is

  • [KVPY 2014]
  • A

    $\cdot \frac{1}{\sqrt{2}}$

  • B

    $\frac{1}{2}$

  • C

    $.. \frac{1}{\sqrt{3}}$

  • D

    $\sqrt{\frac{2}{3}}$

Similar Questions

In an ellipse, the distance between its foci is $6$ and minor axis is $8.$ Then its eccentricity is :

Consider two straight lines, each of which is tangent to both the circle $x ^2+ y ^2=\frac{1}{2}$ and the parabola $y^2=4 x$. Let these lines intersect at the point $Q$. Consider the ellipse whose center is at the origin $O (0,0)$ and whose semi-major axis is $OQ$. If the length of the minor axis of this ellipse is $\sqrt{2}$, then which of the following statement($s$) is (are) $TRUE$?

$(A)$ For the ellipse, the eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $1$

$(B)$ For the ellipse, the eccentricity is $\frac{1}{2}$ and the length of the latus rectum is $\frac{1}{2}$

$(C)$ The area of the region bounded by the ellipse between the lines $x=\frac{1}{\sqrt{2}}$ and $x=1$ is $\frac{1}{4 \sqrt{2}}(\pi-2)$

$(D)$ The area of the region bounded by the ellipse between the lines $x=\frac{1}{\sqrt{2}}$ and $x=1$ is $\frac{1}{16}(\pi-2)$

  • [IIT 2018]

If the tangent to the parabola $y^2 = x$ at a point $\left( {\alpha ,\beta } \right)\,,\,\left( {\beta  > 0} \right)$ is also a tangent to the ellipse, $x^2 + 2y^2 = 1$, then $a$ is equal to

  • [JEE MAIN 2019]

The equation of the tangents drawn at the ends of the major axis of the ellipse $9{x^2} + 5{y^2} - 30y = 0$, are

Let $P \left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), Q , R$ and $S$ be four points on the ellipse $9 x^2+4 y^2=36$. Let $P Q$ and $RS$ be mutually perpendicular and pass through the origin. If $\frac{1}{( PQ )^2}+\frac{1}{( RS )^2}=\frac{ p }{ q }$, where $p$ and $q$ are coprime, then $p+q$ is equal to $.........$.

  • [JEE MAIN 2023]