Let the maximum area of the triangle that can be inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1$, a $>2$, having one of its vertices at one end of the major axis of the ellipse and one of its sides parallel to the $y$-axis, be $6 \sqrt{3}$. Then the eccentricity of the ellispe is

  • [JEE MAIN 2022]
  • A

    $\frac{\sqrt{3}}{2}$

  • B

    $\frac{1}{2}$

  • C

    $\frac{1}{\sqrt{2}}$

  • D

    $\frac{\sqrt{3}}{4}$

Similar Questions

If two tangents drawn from a point $(\alpha, \beta)$ lying on the ellipse $25 x^{2}+4 y^{2}=1$ to the parabola $y^{2}=4 x$ are such that the slope of one tangent is four times the other, then the value of $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ equals

  • [JEE MAIN 2022]

The equation of the ellipse whose centre is $(2, -3)$, one of the foci is $(3, -3)$ and the corresponding vertex is $(4, -3)$ is

An ellipse with its minor and major axis parallel to the coordinate axes passes through $(0,0),(1,0)$ and $(0,2)$. One of its foci lies on the $Y$-axis. The eccentricity of the ellipse is

  • [KVPY 2017]

An ellipse is inscribed in a circle and a point is inside a circle is choosen at random. If the probability that this point lies outside the ellipse is $\frac {2}{3}$ then eccentricity of ellipse is $\frac{{a\sqrt b }}{c}$ . Where $gcd( a, c) = 1$ and $b$ is square free integer ($b$ is not divisible by square of any integer except $1$ ) then $a · b · c$ is

The locus of the middle point of the intercept of the tangents drawn from an external point to the ellipse ${x^2} + 2{y^2} = 2$ between the co-ordinates axes, is

  • [IIT 2004]