- Home
- Standard 11
- Mathematics
An ellipse intersects the hyperbola $2 x^2-2 y^2=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then
$(A)$ Equation of ellipse is $x^2+2 y^2=2$
$(B)$ The foci of ellipse are $( \pm 1,0)$
$(C)$ Equation of ellipse is $x^2+2 y^2=4$
$(D)$ The foci of ellipse are $( \pm \sqrt{2}, 0)$
$(B,C)$
$(A,D)$
$(A,C)$
$(A,B)$
Solution
Given, $2 x^2-2 y^2=1$
$\Rightarrow \quad \frac{x^2}{\left(\frac{1}{2}\right)}-\frac{y^2}{\left(\frac{1}{2}\right)}=1 \quad \ldots \text { (i) }$
$\text { Eccentricity of hyperbola }=\sqrt{2}$
$\text { So eccentricity of ellipse }=1 / \sqrt{2}$
Eccentricity of hyperbola $=\sqrt{2}$
So eccentricity of ellipse $=1 / \sqrt{2}$
Let equation of ellipse be
$ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a > b)$
$\therefore $$ \frac{1}{\sqrt{2}}=\sqrt{1-\frac{b^2}{a^2}}$
$\Rightarrow $$ \frac{b^2}{a^2}=\frac{1}{2} \Rightarrow a^2=2 b^2$
$\therefore $$ x^2+2 y^2=2 b^2 \ldots$
Let ellipse and hyperbola intersect at
$A\left(\frac{1}{\sqrt{2}} \sec \theta, \frac{1}{\sqrt{2}} \tan \theta\right)$
On differentiating Eq. ($i$),
$4 x-4 y \frac{d y}{d x} $$ =0$
$\frac{d y}{d x} $$ =\frac{x}{y}$
$\left.\frac{d y}{d x}\right|_{\text {at } A} $$ =\frac{\sec \theta}{\tan \theta}=\operatorname{cosec} \theta$
$\Rightarrow \quad \frac{d y}{d x}=\frac{x}{y}$
and differentiating Eq. ($ii$),
$2 x+4 y \frac{d y}{d x}=0$
$\left.\frac{d y}{d x}\right|_{\text {at } A}=-\frac{x}{2 y}=-\frac{1}{2} \operatorname{cosec} \theta$
Since, ellipse and hyperbola are orthogonal.
$\therefore $$ -\frac{1}{2} \operatorname{cosec}^2 \theta=-1$
$\Rightarrow $$ \operatorname{cosec}^2 \theta=2$
$\Rightarrow $$ \theta= \pm \frac{\pi}{4}$
$\therefore $$ A\left(1, \frac{1}{\sqrt{2}}\right) \text { or }\left(1,-\frac{1}{\sqrt{2}}\right)$
$\therefore$ Form Eq. (i),
$1+2\left(\frac{1}{\sqrt{2}}\right)^2=2 b^2 \Rightarrow b^2=1$
Equation of ellipse is $x^2+2 y^2=2$
Coordinate of foci $( \pm a e, 0)=\left( \pm \sqrt{2} \cdot \frac{1}{\sqrt{2}}, 0\right)=( \pm 1,0)$
Hence, option $(a)$ and $(b)$ are correct.
If major axis is along $y$-axis, then
$\frac{1}{\sqrt{2}}=\sqrt{1-\frac{a^2}{b^2}} \Rightarrow b^2=2 a^2 $
$\therefore $$ 2 x^2+y^2=2 a^2 $
$\Rightarrow \quad y^{\prime}=-\frac{2 x}{y} \Rightarrow $$ y^{\prime}\left(\frac{1}{\sqrt{2}} \sec \theta, \frac{1}{\sqrt{2}} \tan \theta\right)=\frac{-2}{\sin \theta}$
As ellipse and hyperbola are arthogonal
$\therefore $$ -\frac{2}{\sin \theta} \cdot \operatorname{cosec} \theta=-1 $
$\Rightarrow $$ \operatorname{cosec}^2 \theta=1 \Rightarrow \theta= \pm \frac{\pi}{4} $
$\therefore $$ 2 x^2+y^2=2 a^2 $
$\Rightarrow $$ 2+\frac{1}{2}=2 a^2 $
$\Rightarrow $$ a^2=\frac{5}{4}$
$\therefore $$ 2 x^2+y^2=\frac{5}{2}, \text { corresponding foci are }(0, \pm 1) .$