An ellipse intersects the hyperbola $2 x^2-2 y^2=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then
$(A)$ Equation of ellipse is $x^2+2 y^2=2$
$(B)$ The foci of ellipse are $( \pm 1,0)$
$(C)$ Equation of ellipse is $x^2+2 y^2=4$
$(D)$ The foci of ellipse are $( \pm \sqrt{2}, 0)$
$(B,C)$
$(A,D)$
$(A,C)$
$(A,B)$
The locus of a point $P\left( {\alpha ,\beta } \right)$ moving under the condition that the line $y = \alpha x + \beta $ is a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is
If angle between asymptotes of hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{3} = 4$ is $\frac {\pi }{3}$ , then its conjugate hyperbola is
Area of the triangle formed by the lines $x -y = 0, x + y = 0$ and any tangent to the hyperbola $x^2 -y^2 = a^2$ is :-
Let $P (3\, sec\,\theta , 2\, tan\,\theta )$ and $Q\, (3\, sec\,\phi , 2\, tan\,\phi )$ where $\theta + \phi \, = \frac{\pi}{2}$ , be two distinct points on the hyperbola $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1$ . Then the ordinate of the point of intersection of the normals at $P$ and $Q$ is
If line $ax$ + $by$ = $1$ is normal to the hyperbola $\frac{{{x^2}}}{{{p^2}}} - \frac{{{y^2}}}{{{q^2}}} = 1$ then $\frac{{{p^2}}}{{{a^2}}} - \frac{{{q^2}}}{{{b^2}}} = 1$ is equal to (where $a$,$b$,$p$, $q \in {R^ + })$-