An ellipse intersects the hyperbola $2 x^2-2 y^2=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then
$(A)$ Equation of ellipse is $x^2+2 y^2=2$
$(B)$ The foci of ellipse are $( \pm 1,0)$
$(C)$ Equation of ellipse is $x^2+2 y^2=4$
$(D)$ The foci of ellipse are $( \pm \sqrt{2}, 0)$
$(B,C)$
$(A,D)$
$(A,C)$
$(A,B)$
The locus of the point of intersection of the lines $bxt - ayt = ab$ and $bx + ay = abt$ is
If a directrix of a hyperbola centered at the origin and passing through the point $(4, -2\sqrt 3)$ is $5x = 4\sqrt 5$ and its eccentricity is $e$, then
For hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ which of the following remain constant if $\alpha$ varies
The combined equation of the asymptotes of the hyperbola $2{x^2} + 5xy + 2{y^2} + 4x + 5y = 0$
An ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the vertices of the hyperbola $H: \frac{x^{2}}{49}-\frac{y^{2}}{64}=-1$. Let the major and minor axes of the ellipse $E$ coincide with the transverse and conjugate axes of the hyperbola $H$. Let the product of the eccentricities of $E$ and $H$ be $\frac{1}{2}$. If $l$ is the length of the latus rectum of the ellipse $E$, then the value of $113\,l$ is equal to $....$