An ellipse intersects the hyperbola $2 x^2-2 y^2=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then

$(A)$ Equation of ellipse is $x^2+2 y^2=2$

$(B)$ The foci of ellipse are $( \pm 1,0)$

$(C)$ Equation of ellipse is $x^2+2 y^2=4$

$(D)$ The foci of ellipse are $( \pm \sqrt{2}, 0)$

  • [IIT 2009]
  • A

    $(B,C)$

  • B

    $(A,D)$

  • C

    $(A,C)$

  • D

    $(A,B)$

Similar Questions

The locus of a point $P\left( {\alpha ,\beta } \right)$ moving under the condition that the line $y = \alpha x + \beta $ is a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is

If angle between asymptotes of hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{3} = 4$ is $\frac {\pi }{3}$ , then its conjugate hyperbola is

Area of the triangle formed by the lines $x -y = 0, x + y = 0$ and any tangent to the hyperbola $x^2 -y^2 = a^2$ is :-

Let $P (3\, sec\,\theta , 2\, tan\,\theta )$ and $Q\, (3\, sec\,\phi , 2\, tan\,\phi )$ where $\theta + \phi \, = \frac{\pi}{2}$ , be two distinct points on the hyperbola $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1$ . Then the ordinate of the point of intersection of the normals at $P$ and $Q$ is

  • [JEE MAIN 2014]

If line $ax$ + $by$ = $1$ is normal to the hyperbola $\frac{{{x^2}}}{{{p^2}}} - \frac{{{y^2}}}{{{q^2}}} = 1$ then $\frac{{{p^2}}}{{{a^2}}} - \frac{{{q^2}}}{{{b^2}}} = 1$ is equal to (where $a$,$b$,$p$, $q \in {R^ + })$-