An ellipse is described by using an endless string which is passed over two pins. If the axes are $6\ cm$ and $4\ cm$, the necessary length of the string and the distance between the pins respectively in $cm$, are

  • A

    $6,\;2\sqrt 5 $

  • B

    $6,\;\sqrt 5 $

  • C

    $4,\;2\sqrt 5 $

  • D

    None of these

Similar Questions

Let $L$ be a common tangent line to the curves $4 x^{2}+9 y^{2}=36$ and $(2 x)^{2}+(2 y)^{2}=31$. Then the square of the slope of the line $L$ is ..... .

  • [JEE MAIN 2021]

An ellipse is inscribed in a circle and a point within the circle is chosen at random. If the probability that this point lies outside the ellipse is $2/3 $ then the eccentricity of the ellipse is :

Let $L$ is distance between two parallel normals of  , $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\,\,\,a > b$ then maximum value of $L$ is

The equation to the locus of the middle point of the portion of the tangent to the ellipse $\frac{{{x^2}}}{{16}}$$+$ $\frac{{{y^2}}}{9}$ $= 1$  included between the co-ordinate axes is the curve :

Consider the ellipse

$\frac{x^2}{4}+\frac{y^2}{3}=1$

Let $H (\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through $H$ parallel to the $y$-axis crosses the ellipse and its auxiliary circle at points $E$ and $F$ respectively, in the first quadrant. The tangent to the ellipse at the point $E$ intersects the positive $x$-axis at a point $G$. Suppose the straight line joining $F$ and the origin makes an angle $\phi$ with the positive $x$-axis.

$List-I$ $List-II$
If $\phi=\frac{\pi}{4}$, then the area of the triangle $F G H$ is ($P$) $\frac{(\sqrt{3}-1)^4}{8}$
If $\phi=\frac{\pi}{3}$, then the area of the triangle $F G H$ is ($Q$) $1$
If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is ($R$) $\frac{3}{4}$
If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is ($S$) $\frac{1}{2 \sqrt{3}}$
  ($T$) $\frac{3 \sqrt{3}}{2}$

The correct option is:

  • [IIT 2022]