Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $36 x^{2}+4 y^{2}=144$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given equation is $36 x^{2}+4 y^{2}=144$

It can be written as

$36 x^{2}+4 y^{2}=114$

Or , $\frac{ x ^{2}}{4}+\frac{y^{2}}{36}=1$

Or, $\frac{x^{2}}{2^{2}}+\frac{y^{2}}{6^{2}}=1$        ........ $(1)$

Here, the denominator of $\frac{y^{2}}{6^{2}}$ is greater than the denominator of $\frac{x^{2}}{2^{2}}$

Therefore, the major axis is along the $y-$ axis, while the minor axis is along the $x-$ axis.

On comparing equation $(1)$ with $\frac{ x ^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ we obtain $b =2$ and $a =6$

$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{36-4}=\sqrt{32}=4 \sqrt{2}$

Therefore,

The coordinates of the foci are $(0, \,\pm 4 \sqrt{2})$

The coordinates of the vertices are $(0,\,±6)$

Length of major axis $=2 a=12$

Length of minor axis $=2 b=4$

Eccentricity, $e=\frac{c}{a}=\frac{4 \sqrt{2}}{6}=\frac{2 \sqrt{2}}{3}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 4}{6}=\frac{4}{3}$

Similar Questions

Let $\mathrm{A}(\alpha, 0)$ and $\mathrm{B}(0, \beta)$ be the points on the line $5 x+7 y=50$. Let the point $P$ divide the line segment $A B$ internally in the ratio $7: 3$. Let $3 x-$ $25=0$ be a directrix of the ellipse $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and the corresponding focus be $S$. If from $S$, the perpendicular on the $\mathrm{x}$-axis passes through $\mathrm{P}$, then the length of the latus rectum of $\mathrm{E}$ is equal to

  • [JEE MAIN 2024]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$.

A man running round a race-course notes that the sum of the distance of two flag-posts from him is always $10\ metres$ and the distance between the flag-posts is $8\ metres$. The area of the path he encloses in square metres is

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$

The foci of the ellipse $25{(x + 1)^2} + 9{(y + 2)^2} = 225$ are at