- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
Let $S$ and $S\,'$ be the foci of an ellipse and $B$ be any one of the extremities of its minor axis. If $\Delta S\,'BS$ is a right angled triangle with right angle at $B$ and area $(\Delta S\,'BS) = 8\,sq.$ units, then the length of a latus rectum of the ellipse is
A
$4$
B
$2\sqrt 2$
C
$4\sqrt 2$
D
$2$
(JEE MAIN-2019)
Solution

${m_{SB}}.{m_{S'B}} = 1$
${b^2} = {a^2}{e^2}\,\,\,\,\,\,\,\,…….\left( i \right)$
$\frac{1}{2}S'B.SB = 8$
${a^2}{e^2} + {b^2} = 16\,\,\,\,\,\,\,\,…….\left( {ii} \right)$
${b^2} = {a^2}\left( {1 – {e^2}\,} \right)\,\,\,\,\,\,\,\,…….\left( {iii} \right)$
using $(i),(ii),(ii)$ $a = 4$
$b = 2\sqrt 2 $
$e = \frac{1}{{\sqrt 2 }}$
$\therefore \ell \left( {L.R} \right) = \frac{{2{b^2}}}{a} = 4$
Standard 11
Mathematics