- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(b < a)$, be a ellipse with major axis $A B$ and minor axis $C D$. Let $F_1$ and $F_2$ be its two foci, with $A, F_1, F_2, B$ in that order on the segment $A B$. Suppose $\angle F_1 C B=90^{\circ}$. The eccentricity of the ellipse is
A
$\frac{\sqrt{3}-1}{2}$
B
$\frac{1}{\sqrt{3}}$
C
$\frac{\sqrt{5}-1}{2}$
D
$\frac{1}{\sqrt{5}}$
(KVPY-2020)
Solution

(c)
Here, $\angle F_1 C B=90^{\circ}$
$\frac{-b}{a} \cdot \frac{b}{a e}=-1 \Rightarrow \frac{b^2}{a^2}=e \Rightarrow e=1-e^2$
$e^2+e-1=0$
$e=\frac{-1 \pm \sqrt{5}}{2} \stackrel{\overline{5}}{2} \Rightarrow e=\frac{\sqrt{5}-1}{}$
Standard 11
Mathematics