11.Thermodynamics
hard

An engine takes in $5$ moles of air at $20\,^{\circ} C$ and $1$ $atm,$ and compresses it adiabaticaly to $1 / 10^{\text {th }}$ of the original volume. Assuming air to be a diatomic ideal gas made up of rigid molecules, the change in its internal energy during this process comes out to be $X\, kJ$. The value of $X$ to the nearest integer is

A

$46.87$

B

$45.78$

C

$55.78$

D

$50.23$

(JEE MAIN-2020)

Solution

Diatomic :

$f=5$

$\gamma=7 / 5$

$T _{ i }= T =273+2 0 =293 K$

$V_{i}=V$

$V _{ f }= V / 10$

Adiabatic $TV ^{\gamma-1}=$ constant

$T _{1} V _{1}^{\gamma-1}= T _{2} V _{2}^{\gamma-1}$

$T \cdot V ^{7 / 5-1}= T _{2}\left(\frac{ V }{10}\right)^{7 / 5-1}$

$\Rightarrow T _{2}= T .10^{2 / 5}$

$\Delta U =\frac{ nfR \left( T _{2}- T _{1}\right)}{2}=\frac{5 \times 5 \times \frac{25}{3} \times\left( T \cdot 10^{2 / 5}- T \right)}{2}$

$=\frac{25 \times 25 \times}{6} T \left(10^{2 / 5}-1\right)$

$=\frac{625 \times 293 \times\left(10^{2 / 5}-1\right)}{6}$

$=4.033 \times 10^{3} \approx 4 kJ$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.