11.Thermodynamics
medium

A monatornic gas at a pressure $P,$ having a volume $V$ expands isothermally to a volume $2\, V$ and then adiabatically to a volume $16\, V.$ The final pressure of the gas is $(\,Take \,\gamma = 5/3)$

A

$64 P$

B

$32 P$

C

$\frac{P}{{64}}$

D

$16P$

(AIPMT-2014)

Solution

First, isothermal expansion

$PV = P'\left( {2V} \right);\,\,P' = \frac{P}{2}$

Then, adiabatic expansion

$P'{\left( {2V} \right)^\gamma } = {P_f}{\left( {16V} \right)^\gamma }$

                              $\left( {For\,adiabatic\,process,\,P{V^\gamma } = constant} \right)$

$\frac{P}{2}{\left( {2V} \right)^{5/3}} = {P_f}{\left( {16V} \right)^{5/3}}$

${P_f} = \frac{P}{2}{\left( {\frac{{2V}}{{16V}}} \right)^{5/3}} = \frac{P}{2}{\left( {\frac{1}{8}} \right)^{5/3}} = \frac{P}{2}{\left( {\frac{1}{{{2^3}}}} \right)^{5/3}}$

$ = \frac{P}{2}\left( {\frac{1}{{{2^5}}}} \right) = \frac{P}{{64}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.