An experiment measures quantities $a, b$ and $c$, and quantity $X$ is calculated from $X=a b^{2} / c^{3}$. If the percentage error in $a$, $b$ and $c$ are $\pm 1 \%, \pm 3 \%$ and $\pm 2 \%$, respectively, then the percentage error in $X$ will be
$\pm 13\%$
$\pm 7\%$
$\pm 4\%$
$\pm 1\%$
The following observations were taken for determining surface tension $T$ of water by capillary method:
diameter of capillary, $D= 1.25 \times 10^{-2}\; m$
rise of water, $h=1.45 \times 10^{-2}\; m $
Using $g= 9.80 \;m/s^2$ and the simplified relation $T = \frac{{rhg}}{2}\times 10^3 N/m$ , the possible error in surface tension is ........... $\%$
Three students $S_{1}, S_{2}$ and $S_{3}$ perform an experiment for determining the acceleration due to gravity $(g)$ using a simple pendulum. They use different lengths of pendulum and record time for different number of oscillations. The observations are as shown in the table.
Student No. | Length of pendulum $(cm)$ | No. of oscillations $(n)$ | Total time for oscillations | Time period $(s)$ |
$1.$ | $64.0$ | $8$ | $128.0$ | $16.0$ |
$2.$ | $64.0$ | $4$ | $64.0$ | $16.0$ |
$3.$ | $20.0$ | $4$ | $36.0$ | $9.0$ |
(Least count of length $=0.1 \,{m}$, least count for time $=0.1\, {s}$ )
If $E_{1}, E_{2}$ and $E_{3}$ are the percentage errors in $'g'$ for students $1,2$ and $3$ respectively, then the minimum percentage error is obtained by student no. ....... .
A person measures the depth of a well by measuring the time interval between dropping a stone and receiving the sound of impact with the bottom of the well. The error in his measurement of time is $\delta \mathrm{T}=0.01$ seconds and he measures the depth of the well to be $\mathrm{L}=20$ meters. Take the acceleration due to gravity $\mathrm{g}=10 \mathrm{~ms}^{-2}$ and the velocity of sound is $300 \mathrm{~ms}^{-1}$. Then the fractional error in the measurement, $\delta \mathrm{L} / \mathrm{L}$, is closest to
The density of a solid metal sphere is determined by measuring its mass and its diameter. The maximum error in the density of the sphere is $\left(\frac{x}{100}\right) \% .$ If the relative errors in measuring the mass and the diameter are $6.0 \%$ and $1.5 \%$ respectively, the value of $x$ is
Write rule for error in result due to multiplication and division.