If there is an error of $1\%$ in calculation of mass of disc and $1.5\%$ error in radius, then $\%$ error in moment of inertia about an axis tangent to disc is .......... $\%$
$2.5 $
$4$
$3.5$
$5$
The distance $s$ travelled by a particle in time $t$ is $s=u t-\frac{1}{2} \,g t^{2}$. The initial velocity of the particle was measured to be $u=1.11 \pm 0.01 \,m / s$ and the time interval of the experiment was $t=1.01 \pm 0.1 \,s$. The acceleration was taken to be $g=9.8 \pm 0.1 \,m / s ^{2}$. With these measurements, the student estimates the total distance travelled. How should the student report the result?
What is least count ? What is called least count error ?
A physical quantity $P$ is given by $P= \frac{{{A^3}{B^{\frac{1}{2}}}}}{{{C^{ - 4}}{D^{\frac{3}{2}}}}}$. The quantity which brings in the maximum percentage error in $P$ is
We can reduce random errors by
The period of oscillation of a simple pendulum is $T=2\pi \sqrt {\frac{l}{g}} $. Measured value of $L$ is $20.0\; cm$ known to $1\; mm$ accuracy and time for $100$ oscillations of the pendulum is found to be $90\ s$ using a wrist watch of $1\; s$ resolution. The accuracy in the determination of $g$ is ........ $\%$