An infinite line charge produce a field of $7.182 \times {10^8}\,N/C$ at a distance of $2\, cm$. The linear charge density is
$7.27 \times {10^{ - 4}}\,C/m$
$7.98 \times {10^{ - 4}}\,C/m$
$7.11 \times {10^{ - 4}}\,C/m$
$7.04 \times {10^{ - 4}}\,C/m$
Two concentric conducting thin spherical shells $A$ and $B$ having radii ${r_A}$ and ${r_B}$ (${r_B} > {r_A})$ are charged to ${Q_A}$ and $ - {Q_B}$$(|{Q_B}|\, > \,|{Q_A}|)$. The electrical field along a line, (passing through the centre) is
Two long thin charged rods with charge density $\lambda$ each are placed parallel to each other at a distance $d$ apart. The force per unit length exerted on one rod by the other will be $\left(\right.$ where $\left.k=\frac{1}{4 \pi \varepsilon_0}\right)$
According to Gauss’ Theorem, electric field of an infinitely long straight wire is proportional to
Let $E_1(r), E_2(r)$ and $E_3(r)$ be the respective electric fields at a distance $r$ from a point charge $Q$, an infinitely long wire with constant linear charge density $\lambda$, and an infinite plane with uniform surface charge density $\sigma$. if $E_1\left(r_0\right)=E_2\left(r_0\right)=E_3\left(r_0\right)$ at a given distance $r_0$, then
Shown in the figure are two point charges $+Q$ and $-Q$ inside the cavity of a spherical shell. The charges are kept near the surface of the cavity on opposite sides of the centre of the shell. If $\sigma _1$ is the surface charge on the inner surface and $Q_1$ net charge on it and $\sigma _2$ the surface charge on the outer surface and $Q_2$ net charge on it then