एक अनन्त लम्बा रैखिक आवेश $2\,cm$ की दूरी पर $7.182 \times {10^8}\,N/C$ का विद्युत क्षेत्र उत्पन कर रहा है। रेखीय आवेश घनत्व होगा
$7.27 \times {10^{ - 4}}\,C/m$
$7.98 \times {10^{ - 4}}\,C/m$
$7.11 \times {10^{ - 4}}\,C/m$
$7.04 \times {10^{ - 4}}\,C/m$
गॉस प्रमेय के अनुसार अनन्त लम्बाई के सीधे तार के कारण विद्युत क्षेत्र अनुक्रमानुपाती होता है
माना $\sigma$ चित्रानुसार दो अनन्त पतली समतल शीटो का एकसमान पृष्ठीय आवेश घनत्व है। तब तीन विभिन्न प्रभागो में विद्युत क्षेत्र के मान $E_{\mathrm{I}}, E_{\mathrm{II}}$ व $E_{\mathrm{II}}$ होगें
$10\,cm$ त्रिज्या वाले एकसमान आवेशित कुचालक गोले के केन्द्र से $20\,cm$ की दूरी पर विद्युत क्षेत्र $100\, V/m$ है। गोले के केन्द्र से $3\,cm$ दूरी पर विद्युत क्षेत्र .....$V/m$ होगा
एक त्रिज्या $R_1$ तथा एक समान आवेश घनत्व का गोलाकर आवेश मूल बिन्दु $O$ पर केन्द्रित है। इसमें एक $R_2$ त्रिज्या तथा $P$ पर केन्द्रित एक गोलाकार गुहिका (cavity), जहाँ $O P=a=R_1-R_2$ है, वनाई जाती है। (चित्र देखें)। यदि गुहिका के अन्दर स्थिति $\vec{r}$ पर विधुत क्षेत्र $\overline{ E }(\overrightarrow{ r })$ है, तव सही कथन है (हैं)
दो अनंत लम्बाई की समानान्तर चालक पट्टिकायें (प्लेट्स) जिनके सतही आवेश घनत्व क्रमश : $ + \sigma $ और $ - \sigma $ हैं, एक थोड़ी दूरी के अंतराल पर रखी हैं। इन पट्टिकाओं के बीच का माध्यम निर्वात है। अगर निर्वात का परावैद्युतांक ${\varepsilon _0}$ है, तो पट्टिकाओं के बीच विद्युत क्षेत्र का मान है