एक अनन्त कुचालक चादर के एक सतह पर आवेश घनत्व $\sigma = 0.10\, \mu C/m^2$ है। यदि इसके विद्युत क्षेत्र में दो समविभवी सतहों के मध्य विभवान्तर $50\, V$ है तो इनके मध्य की दूरी होगी
$8.85\, m$
$8.85\, cm$
$8.85\, mm$
$88.5\, mm$
$6\, cm$ की दूरी पर अवस्थित दो बिंदुओं $A$ एवं $B$ पर दो आवेश $2 \mu C$ तथा $-2 \mu C$ रखे हैं।
$(a)$ निकाय के सम विभव पृष्ठ की पहचान कीजिए।
$(b)$ इस पृष्ठ के प्रत्येक बिंदु पर विध्यूत क्षेत्र की दिशा क्या है?
जब एकांक धन आवेश को समविभव सतह पर एक बिन्दु से दूसरे बिन्दु तक ले जाते है, तो
व्यवस्थात्मकतः निम्नलिखित में संगत समविभव पृष्ठ का वर्णन कीजिएः
$(a)$ $Z-$दिशा में अचर विद्युत क्षेत्र
$(b)$ एक क्षेत्र जो एकसमान रूप से बढ़ता है, परंतु एक ही दिशा ( मान लीजिए $z-$ दिशा) में रहता है।
$(c)$ मूल बिंदु पर कोई एकल धनावेश, और
$(d)$ एक समतल में समान दूरी पर समांतर लंबे आवेशित तारों से बने एकसमान जाल।
बल की विद्युत रेखाओं एवं समविभवीय तल के बीच का कोण है :
समरूप विद्युत क्षेत्र किसी क्षेत्र में धनात्मक $x$-दिशा की ओर इंगित है। माना $A$ मूलबिन्दु है, $B$, $x$-अक्ष पर $x = + 1$ सेमी. पर बिन्दु है तथा $C$ $y$-अक्ष पर $y = + 1$ सेमी. पर एक बिन्दु है तो बिन्दुओं $A$, $B$ व $C$ पर विभव निम्न सम्बंध से सन्तुष्ट होंगे