- Home
- Standard 12
- Physics
$5\, nC$ વિદ્યુતભાર ધરાવતાં કણોને $X$- અક્ષ પર અનુક્રમે $x = 1$ $cm$, $x = 2$ $cm$, $x = 4$ $cm$ $x = 8$ $cm$ ………. મૂકેલાં છે.ઘન અને ૠણ વિદ્યુતભારને એકાંતરે મૂકેલા છે.તો ઉગમ બિંદુ પર વિદ્યુતક્ષેત્ર કેટલું થાય?
$12 \times {10^4}$
$24 \times {10^4}$
$36 \times {10^4}$
$48 \times {10^4}$
Solution
(c) $E = \frac{1}{{4\pi {\varepsilon _0}}}.\left[ {\frac{{5 \times {{10}^{ – 9}}}}{{{{(1 \times {{10}^{ – 2}})}^2}}} – \frac{{5 \times {{10}^{ – 9}}}}{{{{(2 \times {{10}^{ – 2}})}^2}}} + \frac{{5 \times {{10}^{ – 9}}}}{{{{(4 \times {{10}^{ – 2}})}^2}}}} \right.$ $\left. { – \frac{{(5 \times {{10}^{ – 9}})}}{{{{(8 \times {{10}^{ – 2}})}^2}}} + …..} \right]$
$ \Rightarrow E = \frac{{9 \times {{10}^9} \times 5 \times {{10}^{ – 9}}}}{{{{10}^{ – 4}}}}\left[ {1 – \frac{1}{{{{(2)}^2}}} + \frac{1}{{{{(4)}^2}}} – \frac{1}{{{{(8)}^2}}} + …} \right]$
$ \Rightarrow E = 45 \times {10^4}\left[ {1 + \frac{1}{{{{(4)}^2}}} + \frac{1}{{{{(16)}^2}}} + …} \right]$
$ – 45 \times {10^4}\left[ {\frac{1}{{{{(2)}^2}}} + \frac{1}{{{{(8)}^2}}} + \frac{1}{{{{(32)}^2}}} + …} \right]$
$ \Rightarrow E = 45 \times {10^4}\left[ {\frac{1}{{1 – \frac{1}{{16}}}}} \right] – \frac{{45 \times 10{\,^4}}}{{(2){\,^2}}}\left[ {1 + \frac{1}{{{4^2}}} + \frac{1}{{{{(16)}^2}}} + ..} \right]$
$E = 48 \times 10^4 -12 \times 10^4 = 36 \times 10^4 \,N/C$