An infinite plane sheet of charge having uniform surface charge density $+\sigma_5 \mathrm{C} / \mathrm{m}^2$ is placed on $\mathrm{x}-\mathrm{y}$ plane. Another infinitely long line charge having uniform linear charge density $+\lambda_e \mathrm{C} / \mathrm{m}$ is placed at $z=4 \mathrm{~m}$ plane and parallel to $y$-axis. If the magnitude values $\left|\sigma_s\right|=2\left|\lambda_{\mathrm{e}}\right|$ then at point $(0,0,2)$, the ratio of magnitudes of electric field values due to sheet charge to that of line charge is $\pi \sqrt{\mathrm{n}}: 1$. The value of $n$ is
$16$
$20$
$23$
$30$
The electric field at $20 \,cm$ from the centre of a uniformly charged non-conducting sphere of radius $10 \,cm$ is $E$. Then at a distance $5 \,cm$ from the centre it will be
Two non-conducting solid spheres of radii $R$ and $2 \ R$, having uniform volume charge densities $\rho_1$ and $\rho_2$ respectively, touch each other. The net electric field at a distance $2 \ R$ from the centre of the smaller sphere, along the line joining the centres of the spheres, is zero. The ratio $\frac{\rho_1}{\rho_2}$ can be ;
$(A)$ $-4$ $(B)$ $-\frac{32}{25}$ $(C)$ $\frac{32}{25}$ $(D)$ $4$
Explain by graph how the electric field by thin spherical shell depends on the distance of point from centre.
Let $\rho (r)\, = \frac{Q}{{\pi {R^4}}}\,r$ be the volume charge density distribution for a solid sphere of radius $R$ and total charge $Q$. For a point $'p'$ inside the sphere at distance $r_1$ from the centre of the sphere, the magnitude of electric field is
The electric field at a distance $\frac{3R}{2}$ from the centre of a charged conducting spherical shell of radius $R$ is $E.$ The electric field at a distance $\frac{R}{2}$ from the centre of the sphere is