An infinitely long solid cylinder of radius $R$ has a uniform volume charge density $\rho$. It has a spherical cavity of radius $R / 2$ with its centre on the axis of the cylinder, as shown in the figure. The magnitude of the electric field at the point $P$, which is at a distance $2 \ R$ from the axis of the cylinder, is given by the expression $\frac{23 \rho R }{16 k \varepsilon_0}$. The value of $k$ is

223447-q

  • [IIT 2012]
  • A

    $6$

  • B

    $7$

  • C

    $8$

  • D

    $9$

Similar Questions

A conducting sphere of radius $10\, cm$ has unknown charge. If the electric field at a distance $20\, cm$ from the centre of the sphere is $1.2 \times 10^3\, N\, C^{-1}$ and points radially inwards. The net charge on the sphere is

A charge $Q$ is uniformly distributed over a large square plate of copper. The electric  field at a point very close to the centre of the plane is $10\, V/m$. If the copper plate is  replaced by a plastic plate of the same geometrical dimensions and carrying the same  charge $Q$ uniformly distributed, then the electric field at the point $P$ will be......$V/m$

Let $\rho (r) =\frac{Q}{{\pi {R^4}}}r$ be the charge density distribution for a solid sphere of radius $R$ and total charge $Q$. For a point '$p$' inside the sphere at distance $r_1$ from the centre of the sphere, the magnitude of electric field is

  • [AIEEE 2009]

An isolated sphere of radius $R$ contains uniform volume distribution of positive charge. Which of the curve shown below, correctly illustrates the dependence of the magnitude of the electric field of the sphere as a function of the distance $r$ from its centre?

  • [KVPY 2011]

Two concentric conducting thin spherical shells of radii $a$ and $b\  (b > a)$ are given charges $Q$ and $ -2Q$ respectively. The electric field along a line passing through centre as a function of distance $(r)$ from centre is given by